Skip to content
Success

Console Output

Started by timer
Running as SYSTEM
Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace
[SSH] script:
TARGETNODE=""""

module load anaconda3_gpu/4.13.0
module load cuda/11.7.0

cd pytorch_train
rm -f train_results_jenkins.csv

# Slurm Arguments
sargs="--nodes=1 "
sargs+="--ntasks-per-node=1 "
sargs+="--mem=16g "
sargs+="--time=00:10:00 "
sargs+="--account=bbmb-hydro "
sargs+="--gpus-per-node=1 "
sargs+="--gpu-bind=closest "
# Add Target node if it exists
if [[ ! -z ${TARGETNODE} ]]
then
    PARTITION=`sinfo --format="%R,%N" -n hydro61  | grep hydro61  | cut -d',' -f1 | tail -1`
    sargs+="--partition=${PARTITION} "
    sargs+="--nodelist=${TARGETNODE} "
else
    sargs+="--partition=a100 "
fi
# Executable to run
scmd="python train.py | tee time.txt"

# Run the command
start_time=`date +%s.%N`
echo $"Starting srun with command"
echo "srun $sargs $scmd"
srun $sargs $scmd
end_time=`date +%s.%N`

runtime=$( echo "$end_time - $start_time" | bc -l )
echo "YVALUE=$runtime" > time.txt
printf "Pytorch test completed in %0.3f secs\n" $runtime

[SSH] executing...
Starting srun with command
srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100  python train.py | tee time.txt
srun: job 84275 queued and waiting for resources
srun: job 84275 has been allocated resources
Running benchmark on hydro08
Epoch [1/64], Step [100/600], Loss: 0.2457
Epoch [1/64], Step [200/600], Loss: 0.1702
Epoch [1/64], Step [300/600], Loss: 0.1002
Epoch [1/64], Step [400/600], Loss: 0.0916
Epoch [1/64], Step [500/600], Loss: 0.0932
Epoch [1/64], Step [600/600], Loss: 0.0255
Epoch [2/64], Step [100/600], Loss: 0.0544
Epoch [2/64], Step [200/600], Loss: 0.0451
Epoch [2/64], Step [300/600], Loss: 0.0206
Epoch [2/64], Step [400/600], Loss: 0.0359
Epoch [2/64], Step [500/600], Loss: 0.0467
Epoch [2/64], Step [600/600], Loss: 0.0254
Epoch [3/64], Step [100/600], Loss: 0.0195
Epoch [3/64], Step [200/600], Loss: 0.0634
Epoch [3/64], Step [300/600], Loss: 0.0409
Epoch [3/64], Step [400/600], Loss: 0.0338
Epoch [3/64], Step [500/600], Loss: 0.0193
Epoch [3/64], Step [600/600], Loss: 0.0111
Epoch [4/64], Step [100/600], Loss: 0.0113
Epoch [4/64], Step [200/600], Loss: 0.0085
Epoch [4/64], Step [300/600], Loss: 0.0142
Epoch [4/64], Step [400/600], Loss: 0.0466
Epoch [4/64], Step [500/600], Loss: 0.0419
Epoch [4/64], Step [600/600], Loss: 0.0258
Epoch [5/64], Step [100/600], Loss: 0.0063
Epoch [5/64], Step [200/600], Loss: 0.0383
Epoch [5/64], Step [300/600], Loss: 0.0316
Epoch [5/64], Step [400/600], Loss: 0.0087
Epoch [5/64], Step [500/600], Loss: 0.0115
Epoch [5/64], Step [600/600], Loss: 0.0137
Epoch [6/64], Step [100/600], Loss: 0.0167
Epoch [6/64], Step [200/600], Loss: 0.0119
Epoch [6/64], Step [300/600], Loss: 0.0048
Epoch [6/64], Step [400/600], Loss: 0.0229
Epoch [6/64], Step [500/600], Loss: 0.0172
Epoch [6/64], Step [600/600], Loss: 0.1008
Epoch [7/64], Step [100/600], Loss: 0.0080
Epoch [7/64], Step [200/600], Loss: 0.0119
Epoch [7/64], Step [300/600], Loss: 0.0275
Epoch [7/64], Step [400/600], Loss: 0.0043
Epoch [7/64], Step [500/600], Loss: 0.0320
Epoch [7/64], Step [600/600], Loss: 0.0317
Epoch [8/64], Step [100/600], Loss: 0.0335
Epoch [8/64], Step [200/600], Loss: 0.0056
Epoch [8/64], Step [300/600], Loss: 0.0049
Epoch [8/64], Step [400/600], Loss: 0.0027
Epoch [8/64], Step [500/600], Loss: 0.0139
Epoch [8/64], Step [600/600], Loss: 0.0485
Epoch [9/64], Step [100/600], Loss: 0.0115
Epoch [9/64], Step [200/600], Loss: 0.0295
Epoch [9/64], Step [300/600], Loss: 0.0203
Epoch [9/64], Step [400/600], Loss: 0.0432
Epoch [9/64], Step [500/600], Loss: 0.0054
Epoch [9/64], Step [600/600], Loss: 0.0068
Epoch [10/64], Step [100/600], Loss: 0.0016
Epoch [10/64], Step [200/600], Loss: 0.0039
Epoch [10/64], Step [300/600], Loss: 0.0235
Epoch [10/64], Step [400/600], Loss: 0.0055
Epoch [10/64], Step [500/600], Loss: 0.0160
Epoch [10/64], Step [600/600], Loss: 0.0629
Epoch [11/64], Step [100/600], Loss: 0.0037
Epoch [11/64], Step [200/600], Loss: 0.0104
Epoch [11/64], Step [300/600], Loss: 0.0015
Epoch [11/64], Step [400/600], Loss: 0.0057
Epoch [11/64], Step [500/600], Loss: 0.0042
Epoch [11/64], Step [600/600], Loss: 0.0010
Epoch [12/64], Step [100/600], Loss: 0.0029
Epoch [12/64], Step [200/600], Loss: 0.0086
Epoch [12/64], Step [300/600], Loss: 0.0037
Epoch [12/64], Step [400/600], Loss: 0.0020
Epoch [12/64], Step [500/600], Loss: 0.0147
Epoch [12/64], Step [600/600], Loss: 0.0121
Epoch [13/64], Step [100/600], Loss: 0.0169
Epoch [13/64], Step [200/600], Loss: 0.0033
Epoch [13/64], Step [300/600], Loss: 0.0046
Epoch [13/64], Step [400/600], Loss: 0.0010
Epoch [13/64], Step [500/600], Loss: 0.0064
Epoch [13/64], Step [600/600], Loss: 0.0129
Epoch [14/64], Step [100/600], Loss: 0.0046
Epoch [14/64], Step [200/600], Loss: 0.0003
Epoch [14/64], Step [300/600], Loss: 0.0010
Epoch [14/64], Step [400/600], Loss: 0.0186
Epoch [14/64], Step [500/600], Loss: 0.0027
Epoch [14/64], Step [600/600], Loss: 0.0068
Epoch [15/64], Step [100/600], Loss: 0.0036
Epoch [15/64], Step [200/600], Loss: 0.0016
Epoch [15/64], Step [300/600], Loss: 0.0028
Epoch [15/64], Step [400/600], Loss: 0.0015
Epoch [15/64], Step [500/600], Loss: 0.0006
Epoch [15/64], Step [600/600], Loss: 0.0076
Epoch [16/64], Step [100/600], Loss: 0.0010
Epoch [16/64], Step [200/600], Loss: 0.0042
Epoch [16/64], Step [300/600], Loss: 0.0059
Epoch [16/64], Step [400/600], Loss: 0.0021
Epoch [16/64], Step [500/600], Loss: 0.0012
Epoch [16/64], Step [600/600], Loss: 0.0003
Epoch [17/64], Step [100/600], Loss: 0.0029
Epoch [17/64], Step [200/600], Loss: 0.0008
Epoch [17/64], Step [300/600], Loss: 0.0010
Epoch [17/64], Step [400/600], Loss: 0.0012
Epoch [17/64], Step [500/600], Loss: 0.0003
Epoch [17/64], Step [600/600], Loss: 0.0011
Epoch [18/64], Step [100/600], Loss: 0.0012
Epoch [18/64], Step [200/600], Loss: 0.0029
Epoch [18/64], Step [300/600], Loss: 0.0004
Epoch [18/64], Step [400/600], Loss: 0.0032
Epoch [18/64], Step [500/600], Loss: 0.0013
Epoch [18/64], Step [600/600], Loss: 0.0263
Epoch [19/64], Step [100/600], Loss: 0.0054
Epoch [19/64], Step [200/600], Loss: 0.0007
Epoch [19/64], Step [300/600], Loss: 0.0004
Epoch [19/64], Step [400/600], Loss: 0.0027
Epoch [19/64], Step [500/600], Loss: 0.0009
Epoch [19/64], Step [600/600], Loss: 0.0028
Epoch [20/64], Step [100/600], Loss: 0.0005
Epoch [20/64], Step [200/600], Loss: 0.0020
Epoch [20/64], Step [300/600], Loss: 0.0004
Epoch [20/64], Step [400/600], Loss: 0.0006
Epoch [20/64], Step [500/600], Loss: 0.0015
Epoch [20/64], Step [600/600], Loss: 0.0006
Epoch [21/64], Step [100/600], Loss: 0.0004
Epoch [21/64], Step [200/600], Loss: 0.0020
Epoch [21/64], Step [300/600], Loss: 0.0089
Epoch [21/64], Step [400/600], Loss: 0.0347
Epoch [21/64], Step [500/600], Loss: 0.0164
Epoch [21/64], Step [600/600], Loss: 0.0184
Epoch [22/64], Step [100/600], Loss: 0.0005
Epoch [22/64], Step [200/600], Loss: 0.0062
Epoch [22/64], Step [300/600], Loss: 0.0003
Epoch [22/64], Step [400/600], Loss: 0.0005
Epoch [22/64], Step [500/600], Loss: 0.0003
Epoch [22/64], Step [600/600], Loss: 0.0003
Epoch [23/64], Step [100/600], Loss: 0.0078
Epoch [23/64], Step [200/600], Loss: 0.0001
Epoch [23/64], Step [300/600], Loss: 0.0073
Epoch [23/64], Step [400/600], Loss: 0.0002
Epoch [23/64], Step [500/600], Loss: 0.0045
Epoch [23/64], Step [600/600], Loss: 0.0010
Epoch [24/64], Step [100/600], Loss: 0.0002
Epoch [24/64], Step [200/600], Loss: 0.0002
Epoch [24/64], Step [300/600], Loss: 0.0026
Epoch [24/64], Step [400/600], Loss: 0.0027
Epoch [24/64], Step [500/600], Loss: 0.0046
Epoch [24/64], Step [600/600], Loss: 0.0000
Epoch [25/64], Step [100/600], Loss: 0.0009
Epoch [25/64], Step [200/600], Loss: 0.0002
Epoch [25/64], Step [300/600], Loss: 0.0006
Epoch [25/64], Step [400/600], Loss: 0.0002
Epoch [25/64], Step [500/600], Loss: 0.0001
Epoch [25/64], Step [600/600], Loss: 0.0006
Epoch [26/64], Step [100/600], Loss: 0.0008
Epoch [26/64], Step [200/600], Loss: 0.0007
Epoch [26/64], Step [300/600], Loss: 0.0001
Epoch [26/64], Step [400/600], Loss: 0.0012
Epoch [26/64], Step [500/600], Loss: 0.0004
Epoch [26/64], Step [600/600], Loss: 0.0002
Epoch [27/64], Step [100/600], Loss: 0.0007
Epoch [27/64], Step [200/600], Loss: 0.0000
Epoch [27/64], Step [300/600], Loss: 0.0399
Epoch [27/64], Step [400/600], Loss: 0.0563
Epoch [27/64], Step [500/600], Loss: 0.0107
Epoch [27/64], Step [600/600], Loss: 0.0013
Epoch [28/64], Step [100/600], Loss: 0.0006
Epoch [28/64], Step [200/600], Loss: 0.0080
Epoch [28/64], Step [300/600], Loss: 0.0001
Epoch [28/64], Step [400/600], Loss: 0.0003
Epoch [28/64], Step [500/600], Loss: 0.0038
Epoch [28/64], Step [600/600], Loss: 0.0002
Epoch [29/64], Step [100/600], Loss: 0.0004
Epoch [29/64], Step [200/600], Loss: 0.0013
Epoch [29/64], Step [300/600], Loss: 0.0002
Epoch [29/64], Step [400/600], Loss: 0.0000
Epoch [29/64], Step [500/600], Loss: 0.0002
Epoch [29/64], Step [600/600], Loss: 0.0001
Epoch [30/64], Step [100/600], Loss: 0.0001
Epoch [30/64], Step [200/600], Loss: 0.0005
Epoch [30/64], Step [300/600], Loss: 0.0005
Epoch [30/64], Step [400/600], Loss: 0.0003
Epoch [30/64], Step [500/600], Loss: 0.0023
Epoch [30/64], Step [600/600], Loss: 0.0005
Epoch [31/64], Step [100/600], Loss: 0.0005
Epoch [31/64], Step [200/600], Loss: 0.0002
Epoch [31/64], Step [300/600], Loss: 0.0000
Epoch [31/64], Step [400/600], Loss: 0.0001
Epoch [31/64], Step [500/600], Loss: 0.0003
Epoch [31/64], Step [600/600], Loss: 0.0006
Epoch [32/64], Step [100/600], Loss: 0.0000
Epoch [32/64], Step [200/600], Loss: 0.0001
Epoch [32/64], Step [300/600], Loss: 0.0004
Epoch [32/64], Step [400/600], Loss: 0.0000
Epoch [32/64], Step [500/600], Loss: 0.0001
Epoch [32/64], Step [600/600], Loss: 0.0005
Epoch [33/64], Step [100/600], Loss: 0.0001
Epoch [33/64], Step [200/600], Loss: 0.0000
Epoch [33/64], Step [300/600], Loss: 0.0002
Epoch [33/64], Step [400/600], Loss: 0.0001
Epoch [33/64], Step [500/600], Loss: 0.0001
Epoch [33/64], Step [600/600], Loss: 0.0001
Epoch [34/64], Step [100/600], Loss: 0.0001
Epoch [34/64], Step [200/600], Loss: 0.0000
Epoch [34/64], Step [300/600], Loss: 0.0000
Epoch [34/64], Step [400/600], Loss: 0.0003
Epoch [34/64], Step [500/600], Loss: 0.0000
Epoch [34/64], Step [600/600], Loss: 0.0001
Epoch [35/64], Step [100/600], Loss: 0.0002
Epoch [35/64], Step [200/600], Loss: 0.0000
Epoch [35/64], Step [300/600], Loss: 0.0001
Epoch [35/64], Step [400/600], Loss: 0.0001
Epoch [35/64], Step [500/600], Loss: 0.0002
Epoch [35/64], Step [600/600], Loss: 0.0002
Epoch [36/64], Step [100/600], Loss: 0.0001
Epoch [36/64], Step [200/600], Loss: 0.0000
Epoch [36/64], Step [300/600], Loss: 0.0001
Epoch [36/64], Step [400/600], Loss: 0.0001
Epoch [36/64], Step [500/600], Loss: 0.0000
Epoch [36/64], Step [600/600], Loss: 0.0001
Epoch [37/64], Step [100/600], Loss: 0.0000
Epoch [37/64], Step [200/600], Loss: 0.0000
Epoch [37/64], Step [300/600], Loss: 0.0000
Epoch [37/64], Step [400/600], Loss: 0.0001
Epoch [37/64], Step [500/600], Loss: 0.0100
Epoch [37/64], Step [600/600], Loss: 0.0161
Epoch [38/64], Step [100/600], Loss: 0.0312
Epoch [38/64], Step [200/600], Loss: 0.0002
Epoch [38/64], Step [300/600], Loss: 0.0030
Epoch [38/64], Step [400/600], Loss: 0.0009
Epoch [38/64], Step [500/600], Loss: 0.0010
Epoch [38/64], Step [600/600], Loss: 0.0085
Epoch [39/64], Step [100/600], Loss: 0.0002
Epoch [39/64], Step [200/600], Loss: 0.0001
Epoch [39/64], Step [300/600], Loss: 0.0000
Epoch [39/64], Step [400/600], Loss: 0.0002
Epoch [39/64], Step [500/600], Loss: 0.0011
Epoch [39/64], Step [600/600], Loss: 0.0015
Epoch [40/64], Step [100/600], Loss: 0.0002
Epoch [40/64], Step [200/600], Loss: 0.0000
Epoch [40/64], Step [300/600], Loss: 0.0000
Epoch [40/64], Step [400/600], Loss: 0.0005
Epoch [40/64], Step [500/600], Loss: 0.0002
Epoch [40/64], Step [600/600], Loss: 0.0001
Epoch [41/64], Step [100/600], Loss: 0.0000
Epoch [41/64], Step [200/600], Loss: 0.0000
Epoch [41/64], Step [300/600], Loss: 0.0002
Epoch [41/64], Step [400/600], Loss: 0.0001
Epoch [41/64], Step [500/600], Loss: 0.0001
Epoch [41/64], Step [600/600], Loss: 0.0001
Epoch [42/64], Step [100/600], Loss: 0.0001
Epoch [42/64], Step [200/600], Loss: 0.0002
Epoch [42/64], Step [300/600], Loss: 0.0001
Epoch [42/64], Step [400/600], Loss: 0.0001
Epoch [42/64], Step [500/600], Loss: 0.0000
Epoch [42/64], Step [600/600], Loss: 0.0001
Epoch [43/64], Step [100/600], Loss: 0.0000
Epoch [43/64], Step [200/600], Loss: 0.0000
Epoch [43/64], Step [300/600], Loss: 0.0000
Epoch [43/64], Step [400/600], Loss: 0.0000
Epoch [43/64], Step [500/600], Loss: 0.0000
Epoch [43/64], Step [600/600], Loss: 0.0000
Epoch [44/64], Step [100/600], Loss: 0.0001
Epoch [44/64], Step [200/600], Loss: 0.0000
Epoch [44/64], Step [300/600], Loss: 0.0002
Epoch [44/64], Step [400/600], Loss: 0.0001
Epoch [44/64], Step [500/600], Loss: 0.0001
Epoch [44/64], Step [600/600], Loss: 0.0001
Epoch [45/64], Step [100/600], Loss: 0.0000
Epoch [45/64], Step [200/600], Loss: 0.0000
Epoch [45/64], Step [300/600], Loss: 0.0001
Epoch [45/64], Step [400/600], Loss: 0.0000
Epoch [45/64], Step [500/600], Loss: 0.0002
Epoch [45/64], Step [600/600], Loss: 0.0000
Epoch [46/64], Step [100/600], Loss: 0.0002
Epoch [46/64], Step [200/600], Loss: 0.0000
Epoch [46/64], Step [300/600], Loss: 0.0000
Epoch [46/64], Step [400/600], Loss: 0.0000
Epoch [46/64], Step [500/600], Loss: 0.0001
Epoch [46/64], Step [600/600], Loss: 0.0001
Epoch [47/64], Step [100/600], Loss: 0.0795
Epoch [47/64], Step [200/600], Loss: 0.0051
Epoch [47/64], Step [300/600], Loss: 0.0018
Epoch [47/64], Step [400/600], Loss: 0.0032
Epoch [47/64], Step [500/600], Loss: 0.0006
Epoch [47/64], Step [600/600], Loss: 0.0047
Epoch [48/64], Step [100/600], Loss: 0.0002
Epoch [48/64], Step [200/600], Loss: 0.0003
Epoch [48/64], Step [300/600], Loss: 0.0000
Epoch [48/64], Step [400/600], Loss: 0.0009
Epoch [48/64], Step [500/600], Loss: 0.0001
Epoch [48/64], Step [600/600], Loss: 0.0000
Epoch [49/64], Step [100/600], Loss: 0.0003
Epoch [49/64], Step [200/600], Loss: 0.0000
Epoch [49/64], Step [300/600], Loss: 0.0001
Epoch [49/64], Step [400/600], Loss: 0.0001
Epoch [49/64], Step [500/600], Loss: 0.0000
Epoch [49/64], Step [600/600], Loss: 0.0001
Epoch [50/64], Step [100/600], Loss: 0.0001
Epoch [50/64], Step [200/600], Loss: 0.0001
Epoch [50/64], Step [300/600], Loss: 0.0000
Epoch [50/64], Step [400/600], Loss: 0.0000
Epoch [50/64], Step [500/600], Loss: 0.0001
Epoch [50/64], Step [600/600], Loss: 0.0001
Epoch [51/64], Step [100/600], Loss: 0.0000
Epoch [51/64], Step [200/600], Loss: 0.0001
Epoch [51/64], Step [300/600], Loss: 0.0000
Epoch [51/64], Step [400/600], Loss: 0.0001
Epoch [51/64], Step [500/600], Loss: 0.0000
Epoch [51/64], Step [600/600], Loss: 0.0000
Epoch [52/64], Step [100/600], Loss: 0.0000
Epoch [52/64], Step [200/600], Loss: 0.0001
Epoch [52/64], Step [300/600], Loss: 0.0001
Epoch [52/64], Step [400/600], Loss: 0.0001
Epoch [52/64], Step [500/600], Loss: 0.0000
Epoch [52/64], Step [600/600], Loss: 0.0000
Epoch [53/64], Step [100/600], Loss: 0.0000
Epoch [53/64], Step [200/600], Loss: 0.0001
Epoch [53/64], Step [300/600], Loss: 0.0000
Epoch [53/64], Step [400/600], Loss: 0.0001
Epoch [53/64], Step [500/600], Loss: 0.0001
Epoch [53/64], Step [600/600], Loss: 0.0000
Epoch [54/64], Step [100/600], Loss: 0.0001
Epoch [54/64], Step [200/600], Loss: 0.0000
Epoch [54/64], Step [300/600], Loss: 0.0001
Epoch [54/64], Step [400/600], Loss: 0.0000
Epoch [54/64], Step [500/600], Loss: 0.0002
Epoch [54/64], Step [600/600], Loss: 0.0001
Epoch [55/64], Step [100/600], Loss: 0.0000
Epoch [55/64], Step [200/600], Loss: 0.0000
Epoch [55/64], Step [300/600], Loss: 0.0001
Epoch [55/64], Step [400/600], Loss: 0.0000
Epoch [55/64], Step [500/600], Loss: 0.0000
Epoch [55/64], Step [600/600], Loss: 0.0000
Epoch [56/64], Step [100/600], Loss: 0.0000
Epoch [56/64], Step [200/600], Loss: 0.0000
Epoch [56/64], Step [300/600], Loss: 0.0000
Epoch [56/64], Step [400/600], Loss: 0.0001
Epoch [56/64], Step [500/600], Loss: 0.0000
Epoch [56/64], Step [600/600], Loss: 0.0000
Epoch [57/64], Step [100/600], Loss: 0.0000
Epoch [57/64], Step [200/600], Loss: 0.0000
Epoch [57/64], Step [300/600], Loss: 0.0000
Epoch [57/64], Step [400/600], Loss: 0.0001
Epoch [57/64], Step [500/600], Loss: 0.0000
Epoch [57/64], Step [600/600], Loss: 0.0000
Epoch [58/64], Step [100/600], Loss: 0.0001
Epoch [58/64], Step [200/600], Loss: 0.0001
Epoch [58/64], Step [300/600], Loss: 0.0647
Epoch [58/64], Step [400/600], Loss: 0.0004
Epoch [58/64], Step [500/600], Loss: 0.0010
Epoch [58/64], Step [600/600], Loss: 0.0009
Epoch [59/64], Step [100/600], Loss: 0.0003
Epoch [59/64], Step [200/600], Loss: 0.0004
Epoch [59/64], Step [300/600], Loss: 0.0003
Epoch [59/64], Step [400/600], Loss: 0.0018
Epoch [59/64], Step [500/600], Loss: 0.0001
Epoch [59/64], Step [600/600], Loss: 0.0136
Epoch [60/64], Step [100/600], Loss: 0.0002
Epoch [60/64], Step [200/600], Loss: 0.0000
Epoch [60/64], Step [300/600], Loss: 0.0000
Epoch [60/64], Step [400/600], Loss: 0.0002
Epoch [60/64], Step [500/600], Loss: 0.0001
Epoch [60/64], Step [600/600], Loss: 0.0001
Epoch [61/64], Step [100/600], Loss: 0.0000
Epoch [61/64], Step [200/600], Loss: 0.0001
Epoch [61/64], Step [300/600], Loss: 0.0001
Epoch [61/64], Step [400/600], Loss: 0.0000
Epoch [61/64], Step [500/600], Loss: 0.0000
Epoch [61/64], Step [600/600], Loss: 0.0000
Epoch [62/64], Step [100/600], Loss: 0.0001
Epoch [62/64], Step [200/600], Loss: 0.0001
Epoch [62/64], Step [300/600], Loss: 0.0000
Epoch [62/64], Step [400/600], Loss: 0.0001
Epoch [62/64], Step [500/600], Loss: 0.0000
Epoch [62/64], Step [600/600], Loss: 0.0000
Epoch [63/64], Step [100/600], Loss: 0.0000
Epoch [63/64], Step [200/600], Loss: 0.0000
Epoch [63/64], Step [300/600], Loss: 0.0001
Epoch [63/64], Step [400/600], Loss: 0.0000
Epoch [63/64], Step [500/600], Loss: 0.0000
Epoch [63/64], Step [600/600], Loss: 0.0000
Epoch [64/64], Step [100/600], Loss: 0.0000
Epoch [64/64], Step [200/600], Loss: 0.0000
Epoch [64/64], Step [300/600], Loss: 0.0000
Epoch [64/64], Step [400/600], Loss: 0.0002
Epoch [64/64], Step [500/600], Loss: 0.0001
Epoch [64/64], Step [600/600], Loss: 0.0000
Pytorch test completed in 442.952 secs

[SSH] completed
[SSH] exit-status: 0

[workspace] $ /bin/sh -xe /tmp/jenkins12988551685143079665.sh
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace
Recording plot data
Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt
Finished: SUCCESS