Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84275 queued and waiting for resources srun: job 84275 has been allocated resources Running benchmark on hydro08 Epoch [1/64], Step [100/600], Loss: 0.2457 Epoch [1/64], Step [200/600], Loss: 0.1702 Epoch [1/64], Step [300/600], Loss: 0.1002 Epoch [1/64], Step [400/600], Loss: 0.0916 Epoch [1/64], Step [500/600], Loss: 0.0932 Epoch [1/64], Step [600/600], Loss: 0.0255 Epoch [2/64], Step [100/600], Loss: 0.0544 Epoch [2/64], Step [200/600], Loss: 0.0451 Epoch [2/64], Step [300/600], Loss: 0.0206 Epoch [2/64], Step [400/600], Loss: 0.0359 Epoch [2/64], Step [500/600], Loss: 0.0467 Epoch [2/64], Step [600/600], Loss: 0.0254 Epoch [3/64], Step [100/600], Loss: 0.0195 Epoch [3/64], Step [200/600], Loss: 0.0634 Epoch [3/64], Step [300/600], Loss: 0.0409 Epoch [3/64], Step [400/600], Loss: 0.0338 Epoch [3/64], Step [500/600], Loss: 0.0193 Epoch [3/64], Step [600/600], Loss: 0.0111 Epoch [4/64], Step [100/600], Loss: 0.0113 Epoch [4/64], Step [200/600], Loss: 0.0085 Epoch [4/64], Step [300/600], Loss: 0.0142 Epoch [4/64], Step [400/600], Loss: 0.0466 Epoch [4/64], Step [500/600], Loss: 0.0419 Epoch [4/64], Step [600/600], Loss: 0.0258 Epoch [5/64], Step [100/600], Loss: 0.0063 Epoch [5/64], Step [200/600], Loss: 0.0383 Epoch [5/64], Step [300/600], Loss: 0.0316 Epoch [5/64], Step [400/600], Loss: 0.0087 Epoch [5/64], Step [500/600], Loss: 0.0115 Epoch [5/64], Step [600/600], Loss: 0.0137 Epoch [6/64], Step [100/600], Loss: 0.0167 Epoch [6/64], Step [200/600], Loss: 0.0119 Epoch [6/64], Step [300/600], Loss: 0.0048 Epoch [6/64], Step [400/600], Loss: 0.0229 Epoch [6/64], Step [500/600], Loss: 0.0172 Epoch [6/64], Step [600/600], Loss: 0.1008 Epoch [7/64], Step [100/600], Loss: 0.0080 Epoch [7/64], Step [200/600], Loss: 0.0119 Epoch [7/64], Step [300/600], Loss: 0.0275 Epoch [7/64], Step [400/600], Loss: 0.0043 Epoch [7/64], Step [500/600], Loss: 0.0320 Epoch [7/64], Step [600/600], Loss: 0.0317 Epoch [8/64], Step [100/600], Loss: 0.0335 Epoch [8/64], Step [200/600], Loss: 0.0056 Epoch [8/64], Step [300/600], Loss: 0.0049 Epoch [8/64], Step [400/600], Loss: 0.0027 Epoch [8/64], Step [500/600], Loss: 0.0139 Epoch [8/64], Step [600/600], Loss: 0.0485 Epoch [9/64], Step [100/600], Loss: 0.0115 Epoch [9/64], Step [200/600], Loss: 0.0295 Epoch [9/64], Step [300/600], Loss: 0.0203 Epoch [9/64], Step [400/600], Loss: 0.0432 Epoch [9/64], Step [500/600], Loss: 0.0054 Epoch [9/64], Step [600/600], Loss: 0.0068 Epoch [10/64], Step [100/600], Loss: 0.0016 Epoch [10/64], Step [200/600], Loss: 0.0039 Epoch [10/64], Step [300/600], Loss: 0.0235 Epoch [10/64], Step [400/600], Loss: 0.0055 Epoch [10/64], Step [500/600], Loss: 0.0160 Epoch [10/64], Step [600/600], Loss: 0.0629 Epoch [11/64], Step [100/600], Loss: 0.0037 Epoch [11/64], Step [200/600], Loss: 0.0104 Epoch [11/64], Step [300/600], Loss: 0.0015 Epoch [11/64], Step [400/600], Loss: 0.0057 Epoch [11/64], Step [500/600], Loss: 0.0042 Epoch [11/64], Step [600/600], Loss: 0.0010 Epoch [12/64], Step [100/600], Loss: 0.0029 Epoch [12/64], Step [200/600], Loss: 0.0086 Epoch [12/64], Step [300/600], Loss: 0.0037 Epoch [12/64], Step [400/600], Loss: 0.0020 Epoch [12/64], Step [500/600], Loss: 0.0147 Epoch [12/64], Step [600/600], Loss: 0.0121 Epoch [13/64], Step [100/600], Loss: 0.0169 Epoch [13/64], Step [200/600], Loss: 0.0033 Epoch [13/64], Step [300/600], Loss: 0.0046 Epoch [13/64], Step [400/600], Loss: 0.0010 Epoch [13/64], Step [500/600], Loss: 0.0064 Epoch [13/64], Step [600/600], Loss: 0.0129 Epoch [14/64], Step [100/600], Loss: 0.0046 Epoch [14/64], Step [200/600], Loss: 0.0003 Epoch [14/64], Step [300/600], Loss: 0.0010 Epoch [14/64], Step [400/600], Loss: 0.0186 Epoch [14/64], Step [500/600], Loss: 0.0027 Epoch [14/64], Step [600/600], Loss: 0.0068 Epoch [15/64], Step [100/600], Loss: 0.0036 Epoch [15/64], Step [200/600], Loss: 0.0016 Epoch [15/64], Step [300/600], Loss: 0.0028 Epoch [15/64], Step [400/600], Loss: 0.0015 Epoch [15/64], Step [500/600], Loss: 0.0006 Epoch [15/64], Step [600/600], Loss: 0.0076 Epoch [16/64], Step [100/600], Loss: 0.0010 Epoch [16/64], Step [200/600], Loss: 0.0042 Epoch [16/64], Step [300/600], Loss: 0.0059 Epoch [16/64], Step [400/600], Loss: 0.0021 Epoch [16/64], Step [500/600], Loss: 0.0012 Epoch [16/64], Step [600/600], Loss: 0.0003 Epoch [17/64], Step [100/600], Loss: 0.0029 Epoch [17/64], Step [200/600], Loss: 0.0008 Epoch [17/64], Step [300/600], Loss: 0.0010 Epoch [17/64], Step [400/600], Loss: 0.0012 Epoch [17/64], Step [500/600], Loss: 0.0003 Epoch [17/64], Step [600/600], Loss: 0.0011 Epoch [18/64], Step [100/600], Loss: 0.0012 Epoch [18/64], Step [200/600], Loss: 0.0029 Epoch [18/64], Step [300/600], Loss: 0.0004 Epoch [18/64], Step [400/600], Loss: 0.0032 Epoch [18/64], Step [500/600], Loss: 0.0013 Epoch [18/64], Step [600/600], Loss: 0.0263 Epoch [19/64], Step [100/600], Loss: 0.0054 Epoch [19/64], Step [200/600], Loss: 0.0007 Epoch [19/64], Step [300/600], Loss: 0.0004 Epoch [19/64], Step [400/600], Loss: 0.0027 Epoch [19/64], Step [500/600], Loss: 0.0009 Epoch [19/64], Step [600/600], Loss: 0.0028 Epoch [20/64], Step [100/600], Loss: 0.0005 Epoch [20/64], Step [200/600], Loss: 0.0020 Epoch [20/64], Step [300/600], Loss: 0.0004 Epoch [20/64], Step [400/600], Loss: 0.0006 Epoch [20/64], Step [500/600], Loss: 0.0015 Epoch [20/64], Step [600/600], Loss: 0.0006 Epoch [21/64], Step [100/600], Loss: 0.0004 Epoch [21/64], Step [200/600], Loss: 0.0020 Epoch [21/64], Step [300/600], Loss: 0.0089 Epoch [21/64], Step [400/600], Loss: 0.0347 Epoch [21/64], Step [500/600], Loss: 0.0164 Epoch [21/64], Step [600/600], Loss: 0.0184 Epoch [22/64], Step [100/600], Loss: 0.0005 Epoch [22/64], Step [200/600], Loss: 0.0062 Epoch [22/64], Step [300/600], Loss: 0.0003 Epoch [22/64], Step [400/600], Loss: 0.0005 Epoch [22/64], Step [500/600], Loss: 0.0003 Epoch [22/64], Step [600/600], Loss: 0.0003 Epoch [23/64], Step [100/600], Loss: 0.0078 Epoch [23/64], Step [200/600], Loss: 0.0001 Epoch [23/64], Step [300/600], Loss: 0.0073 Epoch [23/64], Step [400/600], Loss: 0.0002 Epoch [23/64], Step [500/600], Loss: 0.0045 Epoch [23/64], Step [600/600], Loss: 0.0010 Epoch [24/64], Step [100/600], Loss: 0.0002 Epoch [24/64], Step [200/600], Loss: 0.0002 Epoch [24/64], Step [300/600], Loss: 0.0026 Epoch [24/64], Step [400/600], Loss: 0.0027 Epoch [24/64], Step [500/600], Loss: 0.0046 Epoch [24/64], Step [600/600], Loss: 0.0000 Epoch [25/64], Step [100/600], Loss: 0.0009 Epoch [25/64], Step [200/600], Loss: 0.0002 Epoch [25/64], Step [300/600], Loss: 0.0006 Epoch [25/64], Step [400/600], Loss: 0.0002 Epoch [25/64], Step [500/600], Loss: 0.0001 Epoch [25/64], Step [600/600], Loss: 0.0006 Epoch [26/64], Step [100/600], Loss: 0.0008 Epoch [26/64], Step [200/600], Loss: 0.0007 Epoch [26/64], Step [300/600], Loss: 0.0001 Epoch [26/64], Step [400/600], Loss: 0.0012 Epoch [26/64], Step [500/600], Loss: 0.0004 Epoch [26/64], Step [600/600], Loss: 0.0002 Epoch [27/64], Step [100/600], Loss: 0.0007 Epoch [27/64], Step [200/600], Loss: 0.0000 Epoch [27/64], Step [300/600], Loss: 0.0399 Epoch [27/64], Step [400/600], Loss: 0.0563 Epoch [27/64], Step [500/600], Loss: 0.0107 Epoch [27/64], Step [600/600], Loss: 0.0013 Epoch [28/64], Step [100/600], Loss: 0.0006 Epoch [28/64], Step [200/600], Loss: 0.0080 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0003 Epoch [28/64], Step [500/600], Loss: 0.0038 Epoch [28/64], Step [600/600], Loss: 0.0002 Epoch [29/64], Step [100/600], Loss: 0.0004 Epoch [29/64], Step [200/600], Loss: 0.0013 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0000 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0005 Epoch [30/64], Step [300/600], Loss: 0.0005 Epoch [30/64], Step [400/600], Loss: 0.0003 Epoch [30/64], Step [500/600], Loss: 0.0023 Epoch [30/64], Step [600/600], Loss: 0.0005 Epoch [31/64], Step [100/600], Loss: 0.0005 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0000 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0003 Epoch [31/64], Step [600/600], Loss: 0.0006 Epoch [32/64], Step [100/600], Loss: 0.0000 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0004 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0005 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0000 Epoch [33/64], Step [300/600], Loss: 0.0002 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0000 Epoch [34/64], Step [400/600], Loss: 0.0003 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0002 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0002 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0100 Epoch [37/64], Step [600/600], Loss: 0.0161 Epoch [38/64], Step [100/600], Loss: 0.0312 Epoch [38/64], Step [200/600], Loss: 0.0002 Epoch [38/64], Step [300/600], Loss: 0.0030 Epoch [38/64], Step [400/600], Loss: 0.0009 Epoch [38/64], Step [500/600], Loss: 0.0010 Epoch [38/64], Step [600/600], Loss: 0.0085 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0002 Epoch [39/64], Step [500/600], Loss: 0.0011 Epoch [39/64], Step [600/600], Loss: 0.0015 Epoch [40/64], Step [100/600], Loss: 0.0002 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0005 Epoch [40/64], Step [500/600], Loss: 0.0002 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0002 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0002 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0002 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0001 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0795 Epoch [47/64], Step [200/600], Loss: 0.0051 Epoch [47/64], Step [300/600], Loss: 0.0018 Epoch [47/64], Step [400/600], Loss: 0.0032 Epoch [47/64], Step [500/600], Loss: 0.0006 Epoch [47/64], Step [600/600], Loss: 0.0047 Epoch [48/64], Step [100/600], Loss: 0.0002 Epoch [48/64], Step [200/600], Loss: 0.0003 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0009 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0003 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0002 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0001 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0647 Epoch [58/64], Step [400/600], Loss: 0.0004 Epoch [58/64], Step [500/600], Loss: 0.0010 Epoch [58/64], Step [600/600], Loss: 0.0009 Epoch [59/64], Step [100/600], Loss: 0.0003 Epoch [59/64], Step [200/600], Loss: 0.0004 Epoch [59/64], Step [300/600], Loss: 0.0003 Epoch [59/64], Step [400/600], Loss: 0.0018 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0136 Epoch [60/64], Step [100/600], Loss: 0.0002 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0002 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0002 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 442.952 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins12988551685143079665.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS