Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84448 queued and waiting for resources srun: job 84448 has been allocated resources Running benchmark on hydro01 Epoch [1/64], Step [100/600], Loss: 0.2446 Epoch [1/64], Step [200/600], Loss: 0.1303 Epoch [1/64], Step [300/600], Loss: 0.0897 Epoch [1/64], Step [400/600], Loss: 0.1285 Epoch [1/64], Step [500/600], Loss: 0.0364 Epoch [1/64], Step [600/600], Loss: 0.0681 Epoch [2/64], Step [100/600], Loss: 0.0548 Epoch [2/64], Step [200/600], Loss: 0.0257 Epoch [2/64], Step [300/600], Loss: 0.0211 Epoch [2/64], Step [400/600], Loss: 0.1142 Epoch [2/64], Step [500/600], Loss: 0.0528 Epoch [2/64], Step [600/600], Loss: 0.0077 Epoch [3/64], Step [100/600], Loss: 0.0330 Epoch [3/64], Step [200/600], Loss: 0.0604 Epoch [3/64], Step [300/600], Loss: 0.0440 Epoch [3/64], Step [400/600], Loss: 0.0323 Epoch [3/64], Step [500/600], Loss: 0.0169 Epoch [3/64], Step [600/600], Loss: 0.0409 Epoch [4/64], Step [100/600], Loss: 0.0111 Epoch [4/64], Step [200/600], Loss: 0.0225 Epoch [4/64], Step [300/600], Loss: 0.0303 Epoch [4/64], Step [400/600], Loss: 0.0859 Epoch [4/64], Step [500/600], Loss: 0.0412 Epoch [4/64], Step [600/600], Loss: 0.0273 Epoch [5/64], Step [100/600], Loss: 0.0888 Epoch [5/64], Step [200/600], Loss: 0.0636 Epoch [5/64], Step [300/600], Loss: 0.0518 Epoch [5/64], Step [400/600], Loss: 0.0755 Epoch [5/64], Step [500/600], Loss: 0.0118 Epoch [5/64], Step [600/600], Loss: 0.0584 Epoch [6/64], Step [100/600], Loss: 0.0536 Epoch [6/64], Step [200/600], Loss: 0.0644 Epoch [6/64], Step [300/600], Loss: 0.0242 Epoch [6/64], Step [400/600], Loss: 0.0743 Epoch [6/64], Step [500/600], Loss: 0.0349 Epoch [6/64], Step [600/600], Loss: 0.0119 Epoch [7/64], Step [100/600], Loss: 0.0213 Epoch [7/64], Step [200/600], Loss: 0.0057 Epoch [7/64], Step [300/600], Loss: 0.0036 Epoch [7/64], Step [400/600], Loss: 0.0021 Epoch [7/64], Step [500/600], Loss: 0.0046 Epoch [7/64], Step [600/600], Loss: 0.0105 Epoch [8/64], Step [100/600], Loss: 0.0113 Epoch [8/64], Step [200/600], Loss: 0.0136 Epoch [8/64], Step [300/600], Loss: 0.0464 Epoch [8/64], Step [400/600], Loss: 0.0506 Epoch [8/64], Step [500/600], Loss: 0.0321 Epoch [8/64], Step [600/600], Loss: 0.0756 Epoch [9/64], Step [100/600], Loss: 0.0069 Epoch [9/64], Step [200/600], Loss: 0.0067 Epoch [9/64], Step [300/600], Loss: 0.0332 Epoch [9/64], Step [400/600], Loss: 0.0083 Epoch [9/64], Step [500/600], Loss: 0.0056 Epoch [9/64], Step [600/600], Loss: 0.0021 Epoch [10/64], Step [100/600], Loss: 0.0173 Epoch [10/64], Step [200/600], Loss: 0.0039 Epoch [10/64], Step [300/600], Loss: 0.0051 Epoch [10/64], Step [400/600], Loss: 0.0067 Epoch [10/64], Step [500/600], Loss: 0.0022 Epoch [10/64], Step [600/600], Loss: 0.0352 Epoch [11/64], Step [100/600], Loss: 0.0037 Epoch [11/64], Step [200/600], Loss: 0.0035 Epoch [11/64], Step [300/600], Loss: 0.0159 Epoch [11/64], Step [400/600], Loss: 0.0085 Epoch [11/64], Step [500/600], Loss: 0.0037 Epoch [11/64], Step [600/600], Loss: 0.0188 Epoch [12/64], Step [100/600], Loss: 0.0060 Epoch [12/64], Step [200/600], Loss: 0.0249 Epoch [12/64], Step [300/600], Loss: 0.0047 Epoch [12/64], Step [400/600], Loss: 0.0070 Epoch [12/64], Step [500/600], Loss: 0.0358 Epoch [12/64], Step [600/600], Loss: 0.0063 Epoch [13/64], Step [100/600], Loss: 0.0018 Epoch [13/64], Step [200/600], Loss: 0.0050 Epoch [13/64], Step [300/600], Loss: 0.0010 Epoch [13/64], Step [400/600], Loss: 0.0006 Epoch [13/64], Step [500/600], Loss: 0.0354 Epoch [13/64], Step [600/600], Loss: 0.0007 Epoch [14/64], Step [100/600], Loss: 0.0208 Epoch [14/64], Step [200/600], Loss: 0.0252 Epoch [14/64], Step [300/600], Loss: 0.0015 Epoch [14/64], Step [400/600], Loss: 0.0020 Epoch [14/64], Step [500/600], Loss: 0.0016 Epoch [14/64], Step [600/600], Loss: 0.0148 Epoch [15/64], Step [100/600], Loss: 0.0013 Epoch [15/64], Step [200/600], Loss: 0.0044 Epoch [15/64], Step [300/600], Loss: 0.0006 Epoch [15/64], Step [400/600], Loss: 0.0002 Epoch [15/64], Step [500/600], Loss: 0.0051 Epoch [15/64], Step [600/600], Loss: 0.0258 Epoch [16/64], Step [100/600], Loss: 0.0097 Epoch [16/64], Step [200/600], Loss: 0.0014 Epoch [16/64], Step [300/600], Loss: 0.0020 Epoch [16/64], Step [400/600], Loss: 0.0019 Epoch [16/64], Step [500/600], Loss: 0.0061 Epoch [16/64], Step [600/600], Loss: 0.0018 Epoch [17/64], Step [100/600], Loss: 0.0035 Epoch [17/64], Step [200/600], Loss: 0.0009 Epoch [17/64], Step [300/600], Loss: 0.0107 Epoch [17/64], Step [400/600], Loss: 0.0094 Epoch [17/64], Step [500/600], Loss: 0.0035 Epoch [17/64], Step [600/600], Loss: 0.0008 Epoch [18/64], Step [100/600], Loss: 0.0011 Epoch [18/64], Step [200/600], Loss: 0.0051 Epoch [18/64], Step [300/600], Loss: 0.0007 Epoch [18/64], Step [400/600], Loss: 0.0009 Epoch [18/64], Step [500/600], Loss: 0.0019 Epoch [18/64], Step [600/600], Loss: 0.0197 Epoch [19/64], Step [100/600], Loss: 0.0004 Epoch [19/64], Step [200/600], Loss: 0.0033 Epoch [19/64], Step [300/600], Loss: 0.0016 Epoch [19/64], Step [400/600], Loss: 0.0006 Epoch [19/64], Step [500/600], Loss: 0.0012 Epoch [19/64], Step [600/600], Loss: 0.0032 Epoch [20/64], Step [100/600], Loss: 0.0037 Epoch [20/64], Step [200/600], Loss: 0.0005 Epoch [20/64], Step [300/600], Loss: 0.0018 Epoch [20/64], Step [400/600], Loss: 0.0049 Epoch [20/64], Step [500/600], Loss: 0.0021 Epoch [20/64], Step [600/600], Loss: 0.0003 Epoch [21/64], Step [100/600], Loss: 0.0006 Epoch [21/64], Step [200/600], Loss: 0.0004 Epoch [21/64], Step [300/600], Loss: 0.0079 Epoch [21/64], Step [400/600], Loss: 0.0047 Epoch [21/64], Step [500/600], Loss: 0.0009 Epoch [21/64], Step [600/600], Loss: 0.0020 Epoch [22/64], Step [100/600], Loss: 0.0013 Epoch [22/64], Step [200/600], Loss: 0.0191 Epoch [22/64], Step [300/600], Loss: 0.0013 Epoch [22/64], Step [400/600], Loss: 0.0020 Epoch [22/64], Step [500/600], Loss: 0.0013 Epoch [22/64], Step [600/600], Loss: 0.0003 Epoch [23/64], Step [100/600], Loss: 0.0018 Epoch [23/64], Step [200/600], Loss: 0.0007 Epoch [23/64], Step [300/600], Loss: 0.0006 Epoch [23/64], Step [400/600], Loss: 0.0006 Epoch [23/64], Step [500/600], Loss: 0.0001 Epoch [23/64], Step [600/600], Loss: 0.0009 Epoch [24/64], Step [100/600], Loss: 0.0007 Epoch [24/64], Step [200/600], Loss: 0.0002 Epoch [24/64], Step [300/600], Loss: 0.0001 Epoch [24/64], Step [400/600], Loss: 0.0002 Epoch [24/64], Step [500/600], Loss: 0.0003 Epoch [24/64], Step [600/600], Loss: 0.0003 Epoch [25/64], Step [100/600], Loss: 0.0346 Epoch [25/64], Step [200/600], Loss: 0.0071 Epoch [25/64], Step [300/600], Loss: 0.0384 Epoch [25/64], Step [400/600], Loss: 0.0025 Epoch [25/64], Step [500/600], Loss: 0.0017 Epoch [25/64], Step [600/600], Loss: 0.0038 Epoch [26/64], Step [100/600], Loss: 0.0005 Epoch [26/64], Step [200/600], Loss: 0.0006 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0006 Epoch [26/64], Step [500/600], Loss: 0.0017 Epoch [26/64], Step [600/600], Loss: 0.0001 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0013 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0007 Epoch [27/64], Step [500/600], Loss: 0.0000 Epoch [27/64], Step [600/600], Loss: 0.0005 Epoch [28/64], Step [100/600], Loss: 0.0002 Epoch [28/64], Step [200/600], Loss: 0.0004 Epoch [28/64], Step [300/600], Loss: 0.0008 Epoch [28/64], Step [400/600], Loss: 0.0002 Epoch [28/64], Step [500/600], Loss: 0.0006 Epoch [28/64], Step [600/600], Loss: 0.0000 Epoch [29/64], Step [100/600], Loss: 0.0005 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0003 Epoch [29/64], Step [500/600], Loss: 0.0001 Epoch [29/64], Step [600/600], Loss: 0.0003 Epoch [30/64], Step [100/600], Loss: 0.0004 Epoch [30/64], Step [200/600], Loss: 0.0293 Epoch [30/64], Step [300/600], Loss: 0.0031 Epoch [30/64], Step [400/600], Loss: 0.0454 Epoch [30/64], Step [500/600], Loss: 0.0002 Epoch [30/64], Step [600/600], Loss: 0.0003 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0006 Epoch [31/64], Step [500/600], Loss: 0.0048 Epoch [31/64], Step [600/600], Loss: 0.0071 Epoch [32/64], Step [100/600], Loss: 0.0014 Epoch [32/64], Step [200/600], Loss: 0.0004 Epoch [32/64], Step [300/600], Loss: 0.0016 Epoch [32/64], Step [400/600], Loss: 0.0024 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0005 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0000 Epoch [33/64], Step [300/600], Loss: 0.0003 Epoch [33/64], Step [400/600], Loss: 0.0022 Epoch [33/64], Step [500/600], Loss: 0.0006 Epoch [33/64], Step [600/600], Loss: 0.0028 Epoch [34/64], Step [100/600], Loss: 0.0004 Epoch [34/64], Step [200/600], Loss: 0.0002 Epoch [34/64], Step [300/600], Loss: 0.0011 Epoch [34/64], Step [400/600], Loss: 0.0000 Epoch [34/64], Step [500/600], Loss: 0.0035 Epoch [34/64], Step [600/600], Loss: 0.0096 Epoch [35/64], Step [100/600], Loss: 0.0002 Epoch [35/64], Step [200/600], Loss: 0.0153 Epoch [35/64], Step [300/600], Loss: 0.0014 Epoch [35/64], Step [400/600], Loss: 0.0019 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0003 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0032 Epoch [37/64], Step [100/600], Loss: 0.0003 Epoch [37/64], Step [200/600], Loss: 0.0004 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0000 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0000 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0000 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0003 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0085 Epoch [41/64], Step [300/600], Loss: 0.0110 Epoch [41/64], Step [400/600], Loss: 0.0162 Epoch [41/64], Step [500/600], Loss: 0.0010 Epoch [41/64], Step [600/600], Loss: 0.0002 Epoch [42/64], Step [100/600], Loss: 0.0000 Epoch [42/64], Step [200/600], Loss: 0.0003 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0066 Epoch [42/64], Step [500/600], Loss: 0.0023 Epoch [42/64], Step [600/600], Loss: 0.0003 Epoch [43/64], Step [100/600], Loss: 0.0002 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0003 Epoch [43/64], Step [400/600], Loss: 0.0022 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0002 Epoch [44/64], Step [200/600], Loss: 0.0006 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0002 Epoch [44/64], Step [600/600], Loss: 0.0003 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0003 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0002 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0002 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0002 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0001 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0048 Epoch [49/64], Step [600/600], Loss: 0.0055 Epoch [50/64], Step [100/600], Loss: 0.0030 Epoch [50/64], Step [200/600], Loss: 0.0081 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0003 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0004 Epoch [51/64], Step [300/600], Loss: 0.0004 Epoch [51/64], Step [400/600], Loss: 0.0004 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0002 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0003 Epoch [53/64], Step [600/600], Loss: 0.0001 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0003 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0003 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0001 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0402 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0202 Epoch [61/64], Step [300/600], Loss: 0.0004 Epoch [61/64], Step [400/600], Loss: 0.0016 Epoch [61/64], Step [500/600], Loss: 0.0002 Epoch [61/64], Step [600/600], Loss: 0.0007 Epoch [62/64], Step [100/600], Loss: 0.0002 Epoch [62/64], Step [200/600], Loss: 0.0002 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0003 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0002 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0003 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0002 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 437.022 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins3178075954749696526.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS