Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84574 queued and waiting for resources srun: job 84574 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2531 Epoch [1/64], Step [200/600], Loss: 0.1102 Epoch [1/64], Step [300/600], Loss: 0.0667 Epoch [1/64], Step [400/600], Loss: 0.0657 Epoch [1/64], Step [500/600], Loss: 0.0431 Epoch [1/64], Step [600/600], Loss: 0.0627 Epoch [2/64], Step [100/600], Loss: 0.0465 Epoch [2/64], Step [200/600], Loss: 0.1000 Epoch [2/64], Step [300/600], Loss: 0.0258 Epoch [2/64], Step [400/600], Loss: 0.1055 Epoch [2/64], Step [500/600], Loss: 0.0729 Epoch [2/64], Step [600/600], Loss: 0.0596 Epoch [3/64], Step [100/600], Loss: 0.0438 Epoch [3/64], Step [200/600], Loss: 0.0124 Epoch [3/64], Step [300/600], Loss: 0.0195 Epoch [3/64], Step [400/600], Loss: 0.0168 Epoch [3/64], Step [500/600], Loss: 0.0587 Epoch [3/64], Step [600/600], Loss: 0.0647 Epoch [4/64], Step [100/600], Loss: 0.0077 Epoch [4/64], Step [200/600], Loss: 0.0328 Epoch [4/64], Step [300/600], Loss: 0.0694 Epoch [4/64], Step [400/600], Loss: 0.0096 Epoch [4/64], Step [500/600], Loss: 0.0131 Epoch [4/64], Step [600/600], Loss: 0.0116 Epoch [5/64], Step [100/600], Loss: 0.1069 Epoch [5/64], Step [200/600], Loss: 0.0263 Epoch [5/64], Step [300/600], Loss: 0.0308 Epoch [5/64], Step [400/600], Loss: 0.0756 Epoch [5/64], Step [500/600], Loss: 0.0073 Epoch [5/64], Step [600/600], Loss: 0.0199 Epoch [6/64], Step [100/600], Loss: 0.0186 Epoch [6/64], Step [200/600], Loss: 0.0186 Epoch [6/64], Step [300/600], Loss: 0.0271 Epoch [6/64], Step [400/600], Loss: 0.0179 Epoch [6/64], Step [500/600], Loss: 0.0284 Epoch [6/64], Step [600/600], Loss: 0.0088 Epoch [7/64], Step [100/600], Loss: 0.0121 Epoch [7/64], Step [200/600], Loss: 0.0039 Epoch [7/64], Step [300/600], Loss: 0.0118 Epoch [7/64], Step [400/600], Loss: 0.0615 Epoch [7/64], Step [500/600], Loss: 0.0107 Epoch [7/64], Step [600/600], Loss: 0.0211 Epoch [8/64], Step [100/600], Loss: 0.0184 Epoch [8/64], Step [200/600], Loss: 0.0033 Epoch [8/64], Step [300/600], Loss: 0.0092 Epoch [8/64], Step [400/600], Loss: 0.0029 Epoch [8/64], Step [500/600], Loss: 0.0120 Epoch [8/64], Step [600/600], Loss: 0.0034 Epoch [9/64], Step [100/600], Loss: 0.0035 Epoch [9/64], Step [200/600], Loss: 0.0109 Epoch [9/64], Step [300/600], Loss: 0.0028 Epoch [9/64], Step [400/600], Loss: 0.0012 Epoch [9/64], Step [500/600], Loss: 0.0262 Epoch [9/64], Step [600/600], Loss: 0.0251 Epoch [10/64], Step [100/600], Loss: 0.0248 Epoch [10/64], Step [200/600], Loss: 0.0311 Epoch [10/64], Step [300/600], Loss: 0.0007 Epoch [10/64], Step [400/600], Loss: 0.0073 Epoch [10/64], Step [500/600], Loss: 0.0355 Epoch [10/64], Step [600/600], Loss: 0.0125 Epoch [11/64], Step [100/600], Loss: 0.0048 Epoch [11/64], Step [200/600], Loss: 0.0079 Epoch [11/64], Step [300/600], Loss: 0.0165 Epoch [11/64], Step [400/600], Loss: 0.0190 Epoch [11/64], Step [500/600], Loss: 0.0044 Epoch [11/64], Step [600/600], Loss: 0.0037 Epoch [12/64], Step [100/600], Loss: 0.0065 Epoch [12/64], Step [200/600], Loss: 0.0039 Epoch [12/64], Step [300/600], Loss: 0.0454 Epoch [12/64], Step [400/600], Loss: 0.0121 Epoch [12/64], Step [500/600], Loss: 0.0004 Epoch [12/64], Step [600/600], Loss: 0.0019 Epoch [13/64], Step [100/600], Loss: 0.0023 Epoch [13/64], Step [200/600], Loss: 0.0183 Epoch [13/64], Step [300/600], Loss: 0.0034 Epoch [13/64], Step [400/600], Loss: 0.0050 Epoch [13/64], Step [500/600], Loss: 0.0024 Epoch [13/64], Step [600/600], Loss: 0.0034 Epoch [14/64], Step [100/600], Loss: 0.0017 Epoch [14/64], Step [200/600], Loss: 0.0058 Epoch [14/64], Step [300/600], Loss: 0.0074 Epoch [14/64], Step [400/600], Loss: 0.0183 Epoch [14/64], Step [500/600], Loss: 0.0506 Epoch [14/64], Step [600/600], Loss: 0.0025 Epoch [15/64], Step [100/600], Loss: 0.0009 Epoch [15/64], Step [200/600], Loss: 0.0003 Epoch [15/64], Step [300/600], Loss: 0.0064 Epoch [15/64], Step [400/600], Loss: 0.0103 Epoch [15/64], Step [500/600], Loss: 0.0011 Epoch [15/64], Step [600/600], Loss: 0.0002 Epoch [16/64], Step [100/600], Loss: 0.0011 Epoch [16/64], Step [200/600], Loss: 0.0007 Epoch [16/64], Step [300/600], Loss: 0.0063 Epoch [16/64], Step [400/600], Loss: 0.0020 Epoch [16/64], Step [500/600], Loss: 0.0016 Epoch [16/64], Step [600/600], Loss: 0.0076 Epoch [17/64], Step [100/600], Loss: 0.0010 Epoch [17/64], Step [200/600], Loss: 0.0006 Epoch [17/64], Step [300/600], Loss: 0.0002 Epoch [17/64], Step [400/600], Loss: 0.0015 Epoch [17/64], Step [500/600], Loss: 0.0043 Epoch [17/64], Step [600/600], Loss: 0.0006 Epoch [18/64], Step [100/600], Loss: 0.0087 Epoch [18/64], Step [200/600], Loss: 0.0034 Epoch [18/64], Step [300/600], Loss: 0.0005 Epoch [18/64], Step [400/600], Loss: 0.0013 Epoch [18/64], Step [500/600], Loss: 0.0007 Epoch [18/64], Step [600/600], Loss: 0.0036 Epoch [19/64], Step [100/600], Loss: 0.0053 Epoch [19/64], Step [200/600], Loss: 0.0031 Epoch [19/64], Step [300/600], Loss: 0.0015 Epoch [19/64], Step [400/600], Loss: 0.0016 Epoch [19/64], Step [500/600], Loss: 0.0066 Epoch [19/64], Step [600/600], Loss: 0.0247 Epoch [20/64], Step [100/600], Loss: 0.0068 Epoch [20/64], Step [200/600], Loss: 0.0010 Epoch [20/64], Step [300/600], Loss: 0.0041 Epoch [20/64], Step [400/600], Loss: 0.0177 Epoch [20/64], Step [500/600], Loss: 0.0140 Epoch [20/64], Step [600/600], Loss: 0.0008 Epoch [21/64], Step [100/600], Loss: 0.0026 Epoch [21/64], Step [200/600], Loss: 0.0002 Epoch [21/64], Step [300/600], Loss: 0.0002 Epoch [21/64], Step [400/600], Loss: 0.0010 Epoch [21/64], Step [500/600], Loss: 0.0020 Epoch [21/64], Step [600/600], Loss: 0.0110 Epoch [22/64], Step [100/600], Loss: 0.0026 Epoch [22/64], Step [200/600], Loss: 0.0045 Epoch [22/64], Step [300/600], Loss: 0.0007 Epoch [22/64], Step [400/600], Loss: 0.0012 Epoch [22/64], Step [500/600], Loss: 0.0012 Epoch [22/64], Step [600/600], Loss: 0.0385 Epoch [23/64], Step [100/600], Loss: 0.0012 Epoch [23/64], Step [200/600], Loss: 0.0007 Epoch [23/64], Step [300/600], Loss: 0.0015 Epoch [23/64], Step [400/600], Loss: 0.0035 Epoch [23/64], Step [500/600], Loss: 0.0024 Epoch [23/64], Step [600/600], Loss: 0.0010 Epoch [24/64], Step [100/600], Loss: 0.0466 Epoch [24/64], Step [200/600], Loss: 0.0006 Epoch [24/64], Step [300/600], Loss: 0.0048 Epoch [24/64], Step [400/600], Loss: 0.0011 Epoch [24/64], Step [500/600], Loss: 0.0004 Epoch [24/64], Step [600/600], Loss: 0.0015 Epoch [25/64], Step [100/600], Loss: 0.0025 Epoch [25/64], Step [200/600], Loss: 0.0008 Epoch [25/64], Step [300/600], Loss: 0.0002 Epoch [25/64], Step [400/600], Loss: 0.0001 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0001 Epoch [26/64], Step [100/600], Loss: 0.0008 Epoch [26/64], Step [200/600], Loss: 0.0005 Epoch [26/64], Step [300/600], Loss: 0.0000 Epoch [26/64], Step [400/600], Loss: 0.0000 Epoch [26/64], Step [500/600], Loss: 0.0010 Epoch [26/64], Step [600/600], Loss: 0.0001 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0003 Epoch [27/64], Step [300/600], Loss: 0.0006 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0002 Epoch [27/64], Step [600/600], Loss: 0.0008 Epoch [28/64], Step [100/600], Loss: 0.0093 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0019 Epoch [28/64], Step [400/600], Loss: 0.0010 Epoch [28/64], Step [500/600], Loss: 0.0014 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0036 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0004 Epoch [29/64], Step [500/600], Loss: 0.0000 Epoch [29/64], Step [600/600], Loss: 0.0003 Epoch [30/64], Step [100/600], Loss: 0.0002 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0001 Epoch [30/64], Step [500/600], Loss: 0.0003 Epoch [30/64], Step [600/600], Loss: 0.0026 Epoch [31/64], Step [100/600], Loss: 0.0000 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0004 Epoch [31/64], Step [500/600], Loss: 0.0007 Epoch [31/64], Step [600/600], Loss: 0.0000 Epoch [32/64], Step [100/600], Loss: 0.0005 Epoch [32/64], Step [200/600], Loss: 0.0005 Epoch [32/64], Step [300/600], Loss: 0.0015 Epoch [32/64], Step [400/600], Loss: 0.0031 Epoch [32/64], Step [500/600], Loss: 0.0011 Epoch [32/64], Step [600/600], Loss: 0.0019 Epoch [33/64], Step [100/600], Loss: 0.0005 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0011 Epoch [33/64], Step [400/600], Loss: 0.0003 Epoch [33/64], Step [500/600], Loss: 0.0012 Epoch [33/64], Step [600/600], Loss: 0.0002 Epoch [34/64], Step [100/600], Loss: 0.0142 Epoch [34/64], Step [200/600], Loss: 0.0009 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0005 Epoch [34/64], Step [600/600], Loss: 0.0014 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0265 Epoch [35/64], Step [300/600], Loss: 0.0003 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0020 Epoch [35/64], Step [600/600], Loss: 0.0060 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0002 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0025 Epoch [36/64], Step [500/600], Loss: 0.0007 Epoch [36/64], Step [600/600], Loss: 0.0036 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0009 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0002 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0003 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0007 Epoch [38/64], Step [600/600], Loss: 0.0002 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0003 Epoch [41/64], Step [600/600], Loss: 0.0000 Epoch [42/64], Step [100/600], Loss: 0.0011 Epoch [42/64], Step [200/600], Loss: 0.0032 Epoch [42/64], Step [300/600], Loss: 0.0006 Epoch [42/64], Step [400/600], Loss: 0.0005 Epoch [42/64], Step [500/600], Loss: 0.0005 Epoch [42/64], Step [600/600], Loss: 0.0043 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0003 Epoch [43/64], Step [300/600], Loss: 0.0013 Epoch [43/64], Step [400/600], Loss: 0.0001 Epoch [43/64], Step [500/600], Loss: 0.0003 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0004 Epoch [44/64], Step [200/600], Loss: 0.0001 Epoch [44/64], Step [300/600], Loss: 0.0010 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0001 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0002 Epoch [45/64], Step [200/600], Loss: 0.0002 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0002 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0002 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0001 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0002 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0003 Epoch [53/64], Step [100/600], Loss: 0.0430 Epoch [53/64], Step [200/600], Loss: 0.0003 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0004 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0108 Epoch [54/64], Step [100/600], Loss: 0.0010 Epoch [54/64], Step [200/600], Loss: 0.0008 Epoch [54/64], Step [300/600], Loss: 0.0162 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 432.479 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins7358262455969227828.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS