Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84714 queued and waiting for resources srun: job 84714 has been allocated resources Running benchmark on hydro08 Epoch [1/64], Step [100/600], Loss: 0.2121 Epoch [1/64], Step [200/600], Loss: 0.2228 Epoch [1/64], Step [300/600], Loss: 0.1707 Epoch [1/64], Step [400/600], Loss: 0.1519 Epoch [1/64], Step [500/600], Loss: 0.0331 Epoch [1/64], Step [600/600], Loss: 0.0704 Epoch [2/64], Step [100/600], Loss: 0.1029 Epoch [2/64], Step [200/600], Loss: 0.0616 Epoch [2/64], Step [300/600], Loss: 0.0549 Epoch [2/64], Step [400/600], Loss: 0.0313 Epoch [2/64], Step [500/600], Loss: 0.0290 Epoch [2/64], Step [600/600], Loss: 0.0272 Epoch [3/64], Step [100/600], Loss: 0.0444 Epoch [3/64], Step [200/600], Loss: 0.0579 Epoch [3/64], Step [300/600], Loss: 0.0249 Epoch [3/64], Step [400/600], Loss: 0.0744 Epoch [3/64], Step [500/600], Loss: 0.0109 Epoch [3/64], Step [600/600], Loss: 0.0949 Epoch [4/64], Step [100/600], Loss: 0.0437 Epoch [4/64], Step [200/600], Loss: 0.0228 Epoch [4/64], Step [300/600], Loss: 0.0519 Epoch [4/64], Step [400/600], Loss: 0.0209 Epoch [4/64], Step [500/600], Loss: 0.0322 Epoch [4/64], Step [600/600], Loss: 0.0217 Epoch [5/64], Step [100/600], Loss: 0.0236 Epoch [5/64], Step [200/600], Loss: 0.0071 Epoch [5/64], Step [300/600], Loss: 0.0207 Epoch [5/64], Step [400/600], Loss: 0.0177 Epoch [5/64], Step [500/600], Loss: 0.0276 Epoch [5/64], Step [600/600], Loss: 0.0212 Epoch [6/64], Step [100/600], Loss: 0.0040 Epoch [6/64], Step [200/600], Loss: 0.0028 Epoch [6/64], Step [300/600], Loss: 0.0124 Epoch [6/64], Step [400/600], Loss: 0.0312 Epoch [6/64], Step [500/600], Loss: 0.0117 Epoch [6/64], Step [600/600], Loss: 0.0086 Epoch [7/64], Step [100/600], Loss: 0.2101 Epoch [7/64], Step [200/600], Loss: 0.0083 Epoch [7/64], Step [300/600], Loss: 0.0446 Epoch [7/64], Step [400/600], Loss: 0.0319 Epoch [7/64], Step [500/600], Loss: 0.0179 Epoch [7/64], Step [600/600], Loss: 0.0521 Epoch [8/64], Step [100/600], Loss: 0.0263 Epoch [8/64], Step [200/600], Loss: 0.0185 Epoch [8/64], Step [300/600], Loss: 0.0051 Epoch [8/64], Step [400/600], Loss: 0.0038 Epoch [8/64], Step [500/600], Loss: 0.0076 Epoch [8/64], Step [600/600], Loss: 0.0284 Epoch [9/64], Step [100/600], Loss: 0.0036 Epoch [9/64], Step [200/600], Loss: 0.0038 Epoch [9/64], Step [300/600], Loss: 0.0057 Epoch [9/64], Step [400/600], Loss: 0.0097 Epoch [9/64], Step [500/600], Loss: 0.0020 Epoch [9/64], Step [600/600], Loss: 0.0035 Epoch [10/64], Step [100/600], Loss: 0.0033 Epoch [10/64], Step [200/600], Loss: 0.0165 Epoch [10/64], Step [300/600], Loss: 0.0036 Epoch [10/64], Step [400/600], Loss: 0.0362 Epoch [10/64], Step [500/600], Loss: 0.0053 Epoch [10/64], Step [600/600], Loss: 0.0423 Epoch [11/64], Step [100/600], Loss: 0.0100 Epoch [11/64], Step [200/600], Loss: 0.0126 Epoch [11/64], Step [300/600], Loss: 0.0031 Epoch [11/64], Step [400/600], Loss: 0.0016 Epoch [11/64], Step [500/600], Loss: 0.0017 Epoch [11/64], Step [600/600], Loss: 0.0287 Epoch [12/64], Step [100/600], Loss: 0.0027 Epoch [12/64], Step [200/600], Loss: 0.0011 Epoch [12/64], Step [300/600], Loss: 0.0084 Epoch [12/64], Step [400/600], Loss: 0.0084 Epoch [12/64], Step [500/600], Loss: 0.0035 Epoch [12/64], Step [600/600], Loss: 0.0057 Epoch [13/64], Step [100/600], Loss: 0.0015 Epoch [13/64], Step [200/600], Loss: 0.0250 Epoch [13/64], Step [300/600], Loss: 0.0052 Epoch [13/64], Step [400/600], Loss: 0.0032 Epoch [13/64], Step [500/600], Loss: 0.0063 Epoch [13/64], Step [600/600], Loss: 0.0140 Epoch [14/64], Step [100/600], Loss: 0.0007 Epoch [14/64], Step [200/600], Loss: 0.0112 Epoch [14/64], Step [300/600], Loss: 0.0120 Epoch [14/64], Step [400/600], Loss: 0.0042 Epoch [14/64], Step [500/600], Loss: 0.0036 Epoch [14/64], Step [600/600], Loss: 0.0095 Epoch [15/64], Step [100/600], Loss: 0.0019 Epoch [15/64], Step [200/600], Loss: 0.0020 Epoch [15/64], Step [300/600], Loss: 0.0011 Epoch [15/64], Step [400/600], Loss: 0.0013 Epoch [15/64], Step [500/600], Loss: 0.0306 Epoch [15/64], Step [600/600], Loss: 0.0378 Epoch [16/64], Step [100/600], Loss: 0.0027 Epoch [16/64], Step [200/600], Loss: 0.0026 Epoch [16/64], Step [300/600], Loss: 0.0014 Epoch [16/64], Step [400/600], Loss: 0.0003 Epoch [16/64], Step [500/600], Loss: 0.0227 Epoch [16/64], Step [600/600], Loss: 0.0029 Epoch [17/64], Step [100/600], Loss: 0.0007 Epoch [17/64], Step [200/600], Loss: 0.0003 Epoch [17/64], Step [300/600], Loss: 0.0006 Epoch [17/64], Step [400/600], Loss: 0.0009 Epoch [17/64], Step [500/600], Loss: 0.0119 Epoch [17/64], Step [600/600], Loss: 0.0006 Epoch [18/64], Step [100/600], Loss: 0.0068 Epoch [18/64], Step [200/600], Loss: 0.0030 Epoch [18/64], Step [300/600], Loss: 0.0062 Epoch [18/64], Step [400/600], Loss: 0.0027 Epoch [18/64], Step [500/600], Loss: 0.0007 Epoch [18/64], Step [600/600], Loss: 0.0003 Epoch [19/64], Step [100/600], Loss: 0.0006 Epoch [19/64], Step [200/600], Loss: 0.0020 Epoch [19/64], Step [300/600], Loss: 0.0009 Epoch [19/64], Step [400/600], Loss: 0.0005 Epoch [19/64], Step [500/600], Loss: 0.0017 Epoch [19/64], Step [600/600], Loss: 0.0010 Epoch [20/64], Step [100/600], Loss: 0.0001 Epoch [20/64], Step [200/600], Loss: 0.0005 Epoch [20/64], Step [300/600], Loss: 0.0012 Epoch [20/64], Step [400/600], Loss: 0.0004 Epoch [20/64], Step [500/600], Loss: 0.0008 Epoch [20/64], Step [600/600], Loss: 0.0021 Epoch [21/64], Step [100/600], Loss: 0.0004 Epoch [21/64], Step [200/600], Loss: 0.0020 Epoch [21/64], Step [300/600], Loss: 0.0069 Epoch [21/64], Step [400/600], Loss: 0.0006 Epoch [21/64], Step [500/600], Loss: 0.0040 Epoch [21/64], Step [600/600], Loss: 0.0218 Epoch [22/64], Step [100/600], Loss: 0.0019 Epoch [22/64], Step [200/600], Loss: 0.0003 Epoch [22/64], Step [300/600], Loss: 0.0006 Epoch [22/64], Step [400/600], Loss: 0.0011 Epoch [22/64], Step [500/600], Loss: 0.0009 Epoch [22/64], Step [600/600], Loss: 0.0004 Epoch [23/64], Step [100/600], Loss: 0.0001 Epoch [23/64], Step [200/600], Loss: 0.0003 Epoch [23/64], Step [300/600], Loss: 0.0001 Epoch [23/64], Step [400/600], Loss: 0.0008 Epoch [23/64], Step [500/600], Loss: 0.0058 Epoch [23/64], Step [600/600], Loss: 0.0021 Epoch [24/64], Step [100/600], Loss: 0.0006 Epoch [24/64], Step [200/600], Loss: 0.0009 Epoch [24/64], Step [300/600], Loss: 0.0001 Epoch [24/64], Step [400/600], Loss: 0.0009 Epoch [24/64], Step [500/600], Loss: 0.0009 Epoch [24/64], Step [600/600], Loss: 0.0013 Epoch [25/64], Step [100/600], Loss: 0.0009 Epoch [25/64], Step [200/600], Loss: 0.0017 Epoch [25/64], Step [300/600], Loss: 0.0002 Epoch [25/64], Step [400/600], Loss: 0.0830 Epoch [25/64], Step [500/600], Loss: 0.0010 Epoch [25/64], Step [600/600], Loss: 0.0067 Epoch [26/64], Step [100/600], Loss: 0.0013 Epoch [26/64], Step [200/600], Loss: 0.0013 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0086 Epoch [26/64], Step [600/600], Loss: 0.0003 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0004 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0001 Epoch [27/64], Step [500/600], Loss: 0.0007 Epoch [27/64], Step [600/600], Loss: 0.0003 Epoch [28/64], Step [100/600], Loss: 0.0010 Epoch [28/64], Step [200/600], Loss: 0.0002 Epoch [28/64], Step [300/600], Loss: 0.0002 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0010 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0000 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0003 Epoch [29/64], Step [400/600], Loss: 0.0002 Epoch [29/64], Step [500/600], Loss: 0.0003 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0003 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0006 Epoch [30/64], Step [500/600], Loss: 0.0000 Epoch [30/64], Step [600/600], Loss: 0.0002 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0000 Epoch [31/64], Step [500/600], Loss: 0.0002 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0010 Epoch [33/64], Step [100/600], Loss: 0.0359 Epoch [33/64], Step [200/600], Loss: 0.0005 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0006 Epoch [33/64], Step [500/600], Loss: 0.0062 Epoch [33/64], Step [600/600], Loss: 0.0005 Epoch [34/64], Step [100/600], Loss: 0.0118 Epoch [34/64], Step [200/600], Loss: 0.0004 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0028 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0003 Epoch [35/64], Step [200/600], Loss: 0.0011 Epoch [35/64], Step [300/600], Loss: 0.0002 Epoch [35/64], Step [400/600], Loss: 0.0002 Epoch [35/64], Step [500/600], Loss: 0.0003 Epoch [35/64], Step [600/600], Loss: 0.0003 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0005 Epoch [36/64], Step [600/600], Loss: 0.0002 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0002 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0006 Epoch [39/64], Step [200/600], Loss: 0.0000 Epoch [39/64], Step [300/600], Loss: 0.0002 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0004 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0002 Epoch [42/64], Step [200/600], Loss: 0.0549 Epoch [42/64], Step [300/600], Loss: 0.0032 Epoch [42/64], Step [400/600], Loss: 0.0003 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0008 Epoch [43/64], Step [100/600], Loss: 0.0014 Epoch [43/64], Step [200/600], Loss: 0.0020 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0010 Epoch [44/64], Step [200/600], Loss: 0.0002 Epoch [44/64], Step [300/600], Loss: 0.0009 Epoch [44/64], Step [400/600], Loss: 0.0002 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0002 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0003 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0002 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0002 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0002 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0002 Epoch [47/64], Step [400/600], Loss: 0.0002 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0002 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0001 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0001 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0083 Epoch [51/64], Step [100/600], Loss: 0.0005 Epoch [51/64], Step [200/600], Loss: 0.0025 Epoch [51/64], Step [300/600], Loss: 0.0013 Epoch [51/64], Step [400/600], Loss: 0.0032 Epoch [51/64], Step [500/600], Loss: 0.0003 Epoch [51/64], Step [600/600], Loss: 0.0028 Epoch [52/64], Step [100/600], Loss: 0.0006 Epoch [52/64], Step [200/600], Loss: 0.0013 Epoch [52/64], Step [300/600], Loss: 0.0002 Epoch [52/64], Step [400/600], Loss: 0.0007 Epoch [52/64], Step [500/600], Loss: 0.0012 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0002 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0002 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0001 Epoch [60/64], Step [400/600], Loss: 0.0001 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0015 Epoch [62/64], Step [200/600], Loss: 0.0049 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0002 Epoch [62/64], Step [500/600], Loss: 0.0008 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0021 Epoch [63/64], Step [200/600], Loss: 0.0022 Epoch [63/64], Step [300/600], Loss: 0.0039 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0005 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 439.880 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins6357950865346394777.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS