Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84922 queued and waiting for resources srun: job 84922 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.1950 Epoch [1/64], Step [200/600], Loss: 0.1147 Epoch [1/64], Step [300/600], Loss: 0.0739 Epoch [1/64], Step [400/600], Loss: 0.0290 Epoch [1/64], Step [500/600], Loss: 0.1018 Epoch [1/64], Step [600/600], Loss: 0.0156 Epoch [2/64], Step [100/600], Loss: 0.0745 Epoch [2/64], Step [200/600], Loss: 0.0609 Epoch [2/64], Step [300/600], Loss: 0.0435 Epoch [2/64], Step [400/600], Loss: 0.0049 Epoch [2/64], Step [500/600], Loss: 0.0278 Epoch [2/64], Step [600/600], Loss: 0.0173 Epoch [3/64], Step [100/600], Loss: 0.0191 Epoch [3/64], Step [200/600], Loss: 0.0917 Epoch [3/64], Step [300/600], Loss: 0.0194 Epoch [3/64], Step [400/600], Loss: 0.0396 Epoch [3/64], Step [500/600], Loss: 0.0324 Epoch [3/64], Step [600/600], Loss: 0.0446 Epoch [4/64], Step [100/600], Loss: 0.0143 Epoch [4/64], Step [200/600], Loss: 0.0066 Epoch [4/64], Step [300/600], Loss: 0.0329 Epoch [4/64], Step [400/600], Loss: 0.0453 Epoch [4/64], Step [500/600], Loss: 0.0309 Epoch [4/64], Step [600/600], Loss: 0.0163 Epoch [5/64], Step [100/600], Loss: 0.0225 Epoch [5/64], Step [200/600], Loss: 0.0276 Epoch [5/64], Step [300/600], Loss: 0.0069 Epoch [5/64], Step [400/600], Loss: 0.0057 Epoch [5/64], Step [500/600], Loss: 0.0248 Epoch [5/64], Step [600/600], Loss: 0.0114 Epoch [6/64], Step [100/600], Loss: 0.0055 Epoch [6/64], Step [200/600], Loss: 0.1186 Epoch [6/64], Step [300/600], Loss: 0.0245 Epoch [6/64], Step [400/600], Loss: 0.0335 Epoch [6/64], Step [500/600], Loss: 0.0137 Epoch [6/64], Step [600/600], Loss: 0.0068 Epoch [7/64], Step [100/600], Loss: 0.0287 Epoch [7/64], Step [200/600], Loss: 0.0140 Epoch [7/64], Step [300/600], Loss: 0.0447 Epoch [7/64], Step [400/600], Loss: 0.0301 Epoch [7/64], Step [500/600], Loss: 0.0045 Epoch [7/64], Step [600/600], Loss: 0.0099 Epoch [8/64], Step [100/600], Loss: 0.0235 Epoch [8/64], Step [200/600], Loss: 0.0107 Epoch [8/64], Step [300/600], Loss: 0.0163 Epoch [8/64], Step [400/600], Loss: 0.0328 Epoch [8/64], Step [500/600], Loss: 0.0121 Epoch [8/64], Step [600/600], Loss: 0.0433 Epoch [9/64], Step [100/600], Loss: 0.0086 Epoch [9/64], Step [200/600], Loss: 0.0121 Epoch [9/64], Step [300/600], Loss: 0.0021 Epoch [9/64], Step [400/600], Loss: 0.0066 Epoch [9/64], Step [500/600], Loss: 0.0028 Epoch [9/64], Step [600/600], Loss: 0.0478 Epoch [10/64], Step [100/600], Loss: 0.0013 Epoch [10/64], Step [200/600], Loss: 0.0035 Epoch [10/64], Step [300/600], Loss: 0.0077 Epoch [10/64], Step [400/600], Loss: 0.0485 Epoch [10/64], Step [500/600], Loss: 0.0067 Epoch [10/64], Step [600/600], Loss: 0.0371 Epoch [11/64], Step [100/600], Loss: 0.0091 Epoch [11/64], Step [200/600], Loss: 0.0020 Epoch [11/64], Step [300/600], Loss: 0.0126 Epoch [11/64], Step [400/600], Loss: 0.0015 Epoch [11/64], Step [500/600], Loss: 0.0020 Epoch [11/64], Step [600/600], Loss: 0.0039 Epoch [12/64], Step [100/600], Loss: 0.0023 Epoch [12/64], Step [200/600], Loss: 0.0026 Epoch [12/64], Step [300/600], Loss: 0.0046 Epoch [12/64], Step [400/600], Loss: 0.0134 Epoch [12/64], Step [500/600], Loss: 0.0032 Epoch [12/64], Step [600/600], Loss: 0.0033 Epoch [13/64], Step [100/600], Loss: 0.0069 Epoch [13/64], Step [200/600], Loss: 0.0023 Epoch [13/64], Step [300/600], Loss: 0.0016 Epoch [13/64], Step [400/600], Loss: 0.0007 Epoch [13/64], Step [500/600], Loss: 0.0058 Epoch [13/64], Step [600/600], Loss: 0.0203 Epoch [14/64], Step [100/600], Loss: 0.0002 Epoch [14/64], Step [200/600], Loss: 0.0007 Epoch [14/64], Step [300/600], Loss: 0.0017 Epoch [14/64], Step [400/600], Loss: 0.0011 Epoch [14/64], Step [500/600], Loss: 0.0333 Epoch [14/64], Step [600/600], Loss: 0.0165 Epoch [15/64], Step [100/600], Loss: 0.0071 Epoch [15/64], Step [200/600], Loss: 0.0020 Epoch [15/64], Step [300/600], Loss: 0.0005 Epoch [15/64], Step [400/600], Loss: 0.0052 Epoch [15/64], Step [500/600], Loss: 0.0067 Epoch [15/64], Step [600/600], Loss: 0.0169 Epoch [16/64], Step [100/600], Loss: 0.0042 Epoch [16/64], Step [200/600], Loss: 0.0003 Epoch [16/64], Step [300/600], Loss: 0.0004 Epoch [16/64], Step [400/600], Loss: 0.0018 Epoch [16/64], Step [500/600], Loss: 0.0017 Epoch [16/64], Step [600/600], Loss: 0.0019 Epoch [17/64], Step [100/600], Loss: 0.0005 Epoch [17/64], Step [200/600], Loss: 0.0005 Epoch [17/64], Step [300/600], Loss: 0.0008 Epoch [17/64], Step [400/600], Loss: 0.0971 Epoch [17/64], Step [500/600], Loss: 0.0033 Epoch [17/64], Step [600/600], Loss: 0.0050 Epoch [18/64], Step [100/600], Loss: 0.0096 Epoch [18/64], Step [200/600], Loss: 0.0189 Epoch [18/64], Step [300/600], Loss: 0.0005 Epoch [18/64], Step [400/600], Loss: 0.0011 Epoch [18/64], Step [500/600], Loss: 0.0004 Epoch [18/64], Step [600/600], Loss: 0.0312 Epoch [19/64], Step [100/600], Loss: 0.0020 Epoch [19/64], Step [200/600], Loss: 0.0009 Epoch [19/64], Step [300/600], Loss: 0.0008 Epoch [19/64], Step [400/600], Loss: 0.0002 Epoch [19/64], Step [500/600], Loss: 0.0001 Epoch [19/64], Step [600/600], Loss: 0.0002 Epoch [20/64], Step [100/600], Loss: 0.0003 Epoch [20/64], Step [200/600], Loss: 0.0060 Epoch [20/64], Step [300/600], Loss: 0.0010 Epoch [20/64], Step [400/600], Loss: 0.0004 Epoch [20/64], Step [500/600], Loss: 0.0001 Epoch [20/64], Step [600/600], Loss: 0.0012 Epoch [21/64], Step [100/600], Loss: 0.0010 Epoch [21/64], Step [200/600], Loss: 0.0022 Epoch [21/64], Step [300/600], Loss: 0.0000 Epoch [21/64], Step [400/600], Loss: 0.0024 Epoch [21/64], Step [500/600], Loss: 0.0039 Epoch [21/64], Step [600/600], Loss: 0.0240 Epoch [22/64], Step [100/600], Loss: 0.0038 Epoch [22/64], Step [200/600], Loss: 0.0043 Epoch [22/64], Step [300/600], Loss: 0.0191 Epoch [22/64], Step [400/600], Loss: 0.0013 Epoch [22/64], Step [500/600], Loss: 0.0019 Epoch [22/64], Step [600/600], Loss: 0.0045 Epoch [23/64], Step [100/600], Loss: 0.0000 Epoch [23/64], Step [200/600], Loss: 0.0005 Epoch [23/64], Step [300/600], Loss: 0.0017 Epoch [23/64], Step [400/600], Loss: 0.0019 Epoch [23/64], Step [500/600], Loss: 0.0004 Epoch [23/64], Step [600/600], Loss: 0.0002 Epoch [24/64], Step [100/600], Loss: 0.0002 Epoch [24/64], Step [200/600], Loss: 0.0010 Epoch [24/64], Step [300/600], Loss: 0.0004 Epoch [24/64], Step [400/600], Loss: 0.0018 Epoch [24/64], Step [500/600], Loss: 0.0032 Epoch [24/64], Step [600/600], Loss: 0.0044 Epoch [25/64], Step [100/600], Loss: 0.0151 Epoch [25/64], Step [200/600], Loss: 0.0018 Epoch [25/64], Step [300/600], Loss: 0.0001 Epoch [25/64], Step [400/600], Loss: 0.0062 Epoch [25/64], Step [500/600], Loss: 0.0031 Epoch [25/64], Step [600/600], Loss: 0.0024 Epoch [26/64], Step [100/600], Loss: 0.0001 Epoch [26/64], Step [200/600], Loss: 0.0001 Epoch [26/64], Step [300/600], Loss: 0.0010 Epoch [26/64], Step [400/600], Loss: 0.0008 Epoch [26/64], Step [500/600], Loss: 0.0001 Epoch [26/64], Step [600/600], Loss: 0.0003 Epoch [27/64], Step [100/600], Loss: 0.0008 Epoch [27/64], Step [200/600], Loss: 0.0009 Epoch [27/64], Step [300/600], Loss: 0.0002 Epoch [27/64], Step [400/600], Loss: 0.0043 Epoch [27/64], Step [500/600], Loss: 0.0001 Epoch [27/64], Step [600/600], Loss: 0.0086 Epoch [28/64], Step [100/600], Loss: 0.0004 Epoch [28/64], Step [200/600], Loss: 0.0077 Epoch [28/64], Step [300/600], Loss: 0.0004 Epoch [28/64], Step [400/600], Loss: 0.0013 Epoch [28/64], Step [500/600], Loss: 0.0005 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0002 Epoch [29/64], Step [200/600], Loss: 0.0009 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0005 Epoch [29/64], Step [500/600], Loss: 0.0001 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0000 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0002 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0003 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0004 Epoch [32/64], Step [300/600], Loss: 0.0007 Epoch [32/64], Step [400/600], Loss: 0.0002 Epoch [32/64], Step [500/600], Loss: 0.1340 Epoch [32/64], Step [600/600], Loss: 0.0355 Epoch [33/64], Step [100/600], Loss: 0.0151 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0042 Epoch [33/64], Step [400/600], Loss: 0.0036 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0024 Epoch [34/64], Step [100/600], Loss: 0.0007 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0012 Epoch [34/64], Step [400/600], Loss: 0.0003 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0000 Epoch [35/64], Step [200/600], Loss: 0.0010 Epoch [35/64], Step [300/600], Loss: 0.0004 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0003 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0002 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0002 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0000 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0000 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0002 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0005 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0004 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0251 Epoch [42/64], Step [600/600], Loss: 0.0036 Epoch [43/64], Step [100/600], Loss: 0.0115 Epoch [43/64], Step [200/600], Loss: 0.0002 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0078 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0003 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0004 Epoch [44/64], Step [300/600], Loss: 0.0001 Epoch [44/64], Step [400/600], Loss: 0.0008 Epoch [44/64], Step [500/600], Loss: 0.0087 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0011 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0010 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0002 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0003 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0002 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0009 Epoch [53/64], Step [500/600], Loss: 0.0003 Epoch [53/64], Step [600/600], Loss: 0.0012 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0013 Epoch [54/64], Step [300/600], Loss: 0.0146 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0001 Epoch [54/64], Step [600/600], Loss: 0.0009 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0013 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0002 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0001 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0002 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0004 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0001 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0002 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0002 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0253 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0114 Epoch [64/64], Step [300/600], Loss: 0.0001 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0004 Epoch [64/64], Step [600/600], Loss: 0.0126 Pytorch test completed in 439.215 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins15396109981226598640.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS