Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 85039 queued and waiting for resources srun: job 85039 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2391 Epoch [1/64], Step [200/600], Loss: 0.0831 Epoch [1/64], Step [300/600], Loss: 0.1322 Epoch [1/64], Step [400/600], Loss: 0.1019 Epoch [1/64], Step [500/600], Loss: 0.0680 Epoch [1/64], Step [600/600], Loss: 0.0423 Epoch [2/64], Step [100/600], Loss: 0.0345 Epoch [2/64], Step [200/600], Loss: 0.0424 Epoch [2/64], Step [300/600], Loss: 0.0323 Epoch [2/64], Step [400/600], Loss: 0.0289 Epoch [2/64], Step [500/600], Loss: 0.0233 Epoch [2/64], Step [600/600], Loss: 0.0184 Epoch [3/64], Step [100/600], Loss: 0.0252 Epoch [3/64], Step [200/600], Loss: 0.0288 Epoch [3/64], Step [300/600], Loss: 0.1371 Epoch [3/64], Step [400/600], Loss: 0.0297 Epoch [3/64], Step [500/600], Loss: 0.0125 Epoch [3/64], Step [600/600], Loss: 0.0279 Epoch [4/64], Step [100/600], Loss: 0.0196 Epoch [4/64], Step [200/600], Loss: 0.0924 Epoch [4/64], Step [300/600], Loss: 0.0572 Epoch [4/64], Step [400/600], Loss: 0.0059 Epoch [4/64], Step [500/600], Loss: 0.0447 Epoch [4/64], Step [600/600], Loss: 0.0654 Epoch [5/64], Step [100/600], Loss: 0.0514 Epoch [5/64], Step [200/600], Loss: 0.0079 Epoch [5/64], Step [300/600], Loss: 0.0551 Epoch [5/64], Step [400/600], Loss: 0.0372 Epoch [5/64], Step [500/600], Loss: 0.0663 Epoch [5/64], Step [600/600], Loss: 0.0155 Epoch [6/64], Step [100/600], Loss: 0.0565 Epoch [6/64], Step [200/600], Loss: 0.0294 Epoch [6/64], Step [300/600], Loss: 0.0135 Epoch [6/64], Step [400/600], Loss: 0.0288 Epoch [6/64], Step [500/600], Loss: 0.0096 Epoch [6/64], Step [600/600], Loss: 0.0165 Epoch [7/64], Step [100/600], Loss: 0.0053 Epoch [7/64], Step [200/600], Loss: 0.0046 Epoch [7/64], Step [300/600], Loss: 0.0213 Epoch [7/64], Step [400/600], Loss: 0.0115 Epoch [7/64], Step [500/600], Loss: 0.0114 Epoch [7/64], Step [600/600], Loss: 0.0180 Epoch [8/64], Step [100/600], Loss: 0.0031 Epoch [8/64], Step [200/600], Loss: 0.0116 Epoch [8/64], Step [300/600], Loss: 0.0047 Epoch [8/64], Step [400/600], Loss: 0.0199 Epoch [8/64], Step [500/600], Loss: 0.0025 Epoch [8/64], Step [600/600], Loss: 0.0042 Epoch [9/64], Step [100/600], Loss: 0.0440 Epoch [9/64], Step [200/600], Loss: 0.0071 Epoch [9/64], Step [300/600], Loss: 0.0049 Epoch [9/64], Step [400/600], Loss: 0.0018 Epoch [9/64], Step [500/600], Loss: 0.0012 Epoch [9/64], Step [600/600], Loss: 0.0028 Epoch [10/64], Step [100/600], Loss: 0.0070 Epoch [10/64], Step [200/600], Loss: 0.0328 Epoch [10/64], Step [300/600], Loss: 0.0011 Epoch [10/64], Step [400/600], Loss: 0.0031 Epoch [10/64], Step [500/600], Loss: 0.0024 Epoch [10/64], Step [600/600], Loss: 0.0131 Epoch [11/64], Step [100/600], Loss: 0.0045 Epoch [11/64], Step [200/600], Loss: 0.0057 Epoch [11/64], Step [300/600], Loss: 0.0021 Epoch [11/64], Step [400/600], Loss: 0.0439 Epoch [11/64], Step [500/600], Loss: 0.0145 Epoch [11/64], Step [600/600], Loss: 0.0136 Epoch [12/64], Step [100/600], Loss: 0.0028 Epoch [12/64], Step [200/600], Loss: 0.0057 Epoch [12/64], Step [300/600], Loss: 0.0147 Epoch [12/64], Step [400/600], Loss: 0.0198 Epoch [12/64], Step [500/600], Loss: 0.0206 Epoch [12/64], Step [600/600], Loss: 0.0583 Epoch [13/64], Step [100/600], Loss: 0.0002 Epoch [13/64], Step [200/600], Loss: 0.0022 Epoch [13/64], Step [300/600], Loss: 0.0116 Epoch [13/64], Step [400/600], Loss: 0.0091 Epoch [13/64], Step [500/600], Loss: 0.0007 Epoch [13/64], Step [600/600], Loss: 0.0439 Epoch [14/64], Step [100/600], Loss: 0.0009 Epoch [14/64], Step [200/600], Loss: 0.0028 Epoch [14/64], Step [300/600], Loss: 0.0138 Epoch [14/64], Step [400/600], Loss: 0.0098 Epoch [14/64], Step [500/600], Loss: 0.0057 Epoch [14/64], Step [600/600], Loss: 0.0526 Epoch [15/64], Step [100/600], Loss: 0.0007 Epoch [15/64], Step [200/600], Loss: 0.0006 Epoch [15/64], Step [300/600], Loss: 0.0039 Epoch [15/64], Step [400/600], Loss: 0.0038 Epoch [15/64], Step [500/600], Loss: 0.0026 Epoch [15/64], Step [600/600], Loss: 0.0014 Epoch [16/64], Step [100/600], Loss: 0.0021 Epoch [16/64], Step [200/600], Loss: 0.0002 Epoch [16/64], Step [300/600], Loss: 0.0045 Epoch [16/64], Step [400/600], Loss: 0.0027 Epoch [16/64], Step [500/600], Loss: 0.0065 Epoch [16/64], Step [600/600], Loss: 0.0028 Epoch [17/64], Step [100/600], Loss: 0.0247 Epoch [17/64], Step [200/600], Loss: 0.0014 Epoch [17/64], Step [300/600], Loss: 0.0018 Epoch [17/64], Step [400/600], Loss: 0.0133 Epoch [17/64], Step [500/600], Loss: 0.0003 Epoch [17/64], Step [600/600], Loss: 0.0228 Epoch [18/64], Step [100/600], Loss: 0.0009 Epoch [18/64], Step [200/600], Loss: 0.0015 Epoch [18/64], Step [300/600], Loss: 0.0003 Epoch [18/64], Step [400/600], Loss: 0.0031 Epoch [18/64], Step [500/600], Loss: 0.0027 Epoch [18/64], Step [600/600], Loss: 0.0060 Epoch [19/64], Step [100/600], Loss: 0.0013 Epoch [19/64], Step [200/600], Loss: 0.0008 Epoch [19/64], Step [300/600], Loss: 0.0011 Epoch [19/64], Step [400/600], Loss: 0.0002 Epoch [19/64], Step [500/600], Loss: 0.0018 Epoch [19/64], Step [600/600], Loss: 0.0030 Epoch [20/64], Step [100/600], Loss: 0.0022 Epoch [20/64], Step [200/600], Loss: 0.0036 Epoch [20/64], Step [300/600], Loss: 0.0020 Epoch [20/64], Step [400/600], Loss: 0.0002 Epoch [20/64], Step [500/600], Loss: 0.0144 Epoch [20/64], Step [600/600], Loss: 0.0106 Epoch [21/64], Step [100/600], Loss: 0.0024 Epoch [21/64], Step [200/600], Loss: 0.0012 Epoch [21/64], Step [300/600], Loss: 0.0009 Epoch [21/64], Step [400/600], Loss: 0.0010 Epoch [21/64], Step [500/600], Loss: 0.0057 Epoch [21/64], Step [600/600], Loss: 0.0040 Epoch [22/64], Step [100/600], Loss: 0.0009 Epoch [22/64], Step [200/600], Loss: 0.0004 Epoch [22/64], Step [300/600], Loss: 0.0004 Epoch [22/64], Step [400/600], Loss: 0.0007 Epoch [22/64], Step [500/600], Loss: 0.0007 Epoch [22/64], Step [600/600], Loss: 0.0001 Epoch [23/64], Step [100/600], Loss: 0.0019 Epoch [23/64], Step [200/600], Loss: 0.0006 Epoch [23/64], Step [300/600], Loss: 0.0065 Epoch [23/64], Step [400/600], Loss: 0.0002 Epoch [23/64], Step [500/600], Loss: 0.0022 Epoch [23/64], Step [600/600], Loss: 0.0008 Epoch [24/64], Step [100/600], Loss: 0.0006 Epoch [24/64], Step [200/600], Loss: 0.0007 Epoch [24/64], Step [300/600], Loss: 0.0085 Epoch [24/64], Step [400/600], Loss: 0.0004 Epoch [24/64], Step [500/600], Loss: 0.0007 Epoch [24/64], Step [600/600], Loss: 0.0001 Epoch [25/64], Step [100/600], Loss: 0.0044 Epoch [25/64], Step [200/600], Loss: 0.0001 Epoch [25/64], Step [300/600], Loss: 0.0000 Epoch [25/64], Step [400/600], Loss: 0.0003 Epoch [25/64], Step [500/600], Loss: 0.0022 Epoch [25/64], Step [600/600], Loss: 0.0014 Epoch [26/64], Step [100/600], Loss: 0.0002 Epoch [26/64], Step [200/600], Loss: 0.0006 Epoch [26/64], Step [300/600], Loss: 0.0001 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0001 Epoch [26/64], Step [600/600], Loss: 0.0007 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0028 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0012 Epoch [27/64], Step [600/600], Loss: 0.0156 Epoch [28/64], Step [100/600], Loss: 0.0004 Epoch [28/64], Step [200/600], Loss: 0.0015 Epoch [28/64], Step [300/600], Loss: 0.0020 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0005 Epoch [28/64], Step [600/600], Loss: 0.0031 Epoch [29/64], Step [100/600], Loss: 0.0002 Epoch [29/64], Step [200/600], Loss: 0.0015 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0000 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0003 Epoch [30/64], Step [100/600], Loss: 0.0004 Epoch [30/64], Step [200/600], Loss: 0.0005 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0002 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0004 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0003 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0003 Epoch [32/64], Step [100/600], Loss: 0.0003 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0000 Epoch [32/64], Step [400/600], Loss: 0.0003 Epoch [32/64], Step [500/600], Loss: 0.0006 Epoch [32/64], Step [600/600], Loss: 0.0003 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0014 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0002 Epoch [33/64], Step [500/600], Loss: 0.0002 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0003 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0001 Epoch [35/64], Step [300/600], Loss: 0.0004 Epoch [35/64], Step [400/600], Loss: 0.0000 Epoch [35/64], Step [500/600], Loss: 0.0003 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0002 Epoch [37/64], Step [100/600], Loss: 0.0769 Epoch [37/64], Step [200/600], Loss: 0.0030 Epoch [37/64], Step [300/600], Loss: 0.0057 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0029 Epoch [37/64], Step [600/600], Loss: 0.0003 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0047 Epoch [38/64], Step [300/600], Loss: 0.0004 Epoch [38/64], Step [400/600], Loss: 0.0003 Epoch [38/64], Step [500/600], Loss: 0.0003 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0002 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0010 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0002 Epoch [40/64], Step [200/600], Loss: 0.0002 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0006 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0000 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0002 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0002 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0001 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0001 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0003 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0002 Epoch [45/64], Step [500/600], Loss: 0.0003 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.1226 Epoch [46/64], Step [200/600], Loss: 0.0017 Epoch [46/64], Step [300/600], Loss: 0.0073 Epoch [46/64], Step [400/600], Loss: 0.0028 Epoch [46/64], Step [500/600], Loss: 0.0005 Epoch [46/64], Step [600/600], Loss: 0.0012 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0002 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0007 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0014 Epoch [48/64], Step [600/600], Loss: 0.0001 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0001 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0001 Epoch [49/64], Step [600/600], Loss: 0.0012 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0002 Epoch [50/64], Step [400/600], Loss: 0.0002 Epoch [50/64], Step [500/600], Loss: 0.0002 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0094 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0036 Epoch [51/64], Step [400/600], Loss: 0.0022 Epoch [51/64], Step [500/600], Loss: 0.0007 Epoch [51/64], Step [600/600], Loss: 0.0068 Epoch [52/64], Step [100/600], Loss: 0.0034 Epoch [52/64], Step [200/600], Loss: 0.0003 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0028 Epoch [52/64], Step [600/600], Loss: 0.0002 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0002 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0001 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0001 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0002 Epoch [54/64], Step [500/600], Loss: 0.0001 Epoch [54/64], Step [600/600], Loss: 0.0004 Epoch [55/64], Step [100/600], Loss: 0.0007 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0003 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0001 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0028 Epoch [61/64], Step [200/600], Loss: 0.0513 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0002 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0008 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0140 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0008 Epoch [62/64], Step [600/600], Loss: 0.0005 Epoch [63/64], Step [100/600], Loss: 0.0002 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0005 Epoch [63/64], Step [600/600], Loss: 0.0002 Epoch [64/64], Step [100/600], Loss: 0.0007 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0002 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 426.383 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins6308828073474352221.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS