Started by user Jeremy Enos Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96856 queued and waiting for resources srun: job 96856 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2091 Epoch [1/64], Step [200/600], Loss: 0.1950 Epoch [1/64], Step [300/600], Loss: 0.0546 Epoch [1/64], Step [400/600], Loss: 0.0381 Epoch [1/64], Step [500/600], Loss: 0.0191 Epoch [1/64], Step [600/600], Loss: 0.0308 Epoch [2/64], Step [100/600], Loss: 0.0129 Epoch [2/64], Step [200/600], Loss: 0.0359 Epoch [2/64], Step [300/600], Loss: 0.0895 Epoch [2/64], Step [400/600], Loss: 0.0631 Epoch [2/64], Step [500/600], Loss: 0.0220 Epoch [2/64], Step [600/600], Loss: 0.0855 Epoch [3/64], Step [100/600], Loss: 0.0484 Epoch [3/64], Step [200/600], Loss: 0.0176 Epoch [3/64], Step [300/600], Loss: 0.0682 Epoch [3/64], Step [400/600], Loss: 0.0071 Epoch [3/64], Step [500/600], Loss: 0.0820 Epoch [3/64], Step [600/600], Loss: 0.0448 Epoch [4/64], Step [100/600], Loss: 0.0452 Epoch [4/64], Step [200/600], Loss: 0.0053 Epoch [4/64], Step [300/600], Loss: 0.0061 Epoch [4/64], Step [400/600], Loss: 0.0312 Epoch [4/64], Step [500/600], Loss: 0.0266 Epoch [4/64], Step [600/600], Loss: 0.0267 Epoch [5/64], Step [100/600], Loss: 0.0309 Epoch [5/64], Step [200/600], Loss: 0.0146 Epoch [5/64], Step [300/600], Loss: 0.0152 Epoch [5/64], Step [400/600], Loss: 0.0115 Epoch [5/64], Step [500/600], Loss: 0.0074 Epoch [5/64], Step [600/600], Loss: 0.0372 Epoch [6/64], Step [100/600], Loss: 0.0081 Epoch [6/64], Step [200/600], Loss: 0.0174 Epoch [6/64], Step [300/600], Loss: 0.0219 Epoch [6/64], Step [400/600], Loss: 0.0197 Epoch [6/64], Step [500/600], Loss: 0.1342 Epoch [6/64], Step [600/600], Loss: 0.0084 Epoch [7/64], Step [100/600], Loss: 0.0095 Epoch [7/64], Step [200/600], Loss: 0.0023 Epoch [7/64], Step [300/600], Loss: 0.0129 Epoch [7/64], Step [400/600], Loss: 0.0102 Epoch [7/64], Step [500/600], Loss: 0.0128 Epoch [7/64], Step [600/600], Loss: 0.0114 Epoch [8/64], Step [100/600], Loss: 0.0146 Epoch [8/64], Step [200/600], Loss: 0.0066 Epoch [8/64], Step [300/600], Loss: 0.0031 Epoch [8/64], Step [400/600], Loss: 0.0397 Epoch [8/64], Step [500/600], Loss: 0.0189 Epoch [8/64], Step [600/600], Loss: 0.0142 Epoch [9/64], Step [100/600], Loss: 0.0210 Epoch [9/64], Step [200/600], Loss: 0.0033 Epoch [9/64], Step [300/600], Loss: 0.0022 Epoch [9/64], Step [400/600], Loss: 0.0016 Epoch [9/64], Step [500/600], Loss: 0.0036 Epoch [9/64], Step [600/600], Loss: 0.0029 Epoch [10/64], Step [100/600], Loss: 0.0009 Epoch [10/64], Step [200/600], Loss: 0.0091 Epoch [10/64], Step [300/600], Loss: 0.0037 Epoch [10/64], Step [400/600], Loss: 0.0079 Epoch [10/64], Step [500/600], Loss: 0.0134 Epoch [10/64], Step [600/600], Loss: 0.0052 Epoch [11/64], Step [100/600], Loss: 0.0059 Epoch [11/64], Step [200/600], Loss: 0.0037 Epoch [11/64], Step [300/600], Loss: 0.0069 Epoch [11/64], Step [400/600], Loss: 0.0225 Epoch [11/64], Step [500/600], Loss: 0.0014 Epoch [11/64], Step [600/600], Loss: 0.0048 Epoch [12/64], Step [100/600], Loss: 0.0024 Epoch [12/64], Step [200/600], Loss: 0.0037 Epoch [12/64], Step [300/600], Loss: 0.0025 Epoch [12/64], Step [400/600], Loss: 0.0080 Epoch [12/64], Step [500/600], Loss: 0.0051 Epoch [12/64], Step [600/600], Loss: 0.0039 Epoch [13/64], Step [100/600], Loss: 0.0147 Epoch [13/64], Step [200/600], Loss: 0.0007 Epoch [13/64], Step [300/600], Loss: 0.0025 Epoch [13/64], Step [400/600], Loss: 0.0055 Epoch [13/64], Step [500/600], Loss: 0.0297 Epoch [13/64], Step [600/600], Loss: 0.0090 Epoch [14/64], Step [100/600], Loss: 0.0017 Epoch [14/64], Step [200/600], Loss: 0.0013 Epoch [14/64], Step [300/600], Loss: 0.0029 Epoch [14/64], Step [400/600], Loss: 0.0221 Epoch [14/64], Step [500/600], Loss: 0.0007 Epoch [14/64], Step [600/600], Loss: 0.0040 Epoch [15/64], Step [100/600], Loss: 0.0010 Epoch [15/64], Step [200/600], Loss: 0.0019 Epoch [15/64], Step [300/600], Loss: 0.0013 Epoch [15/64], Step [400/600], Loss: 0.0008 Epoch [15/64], Step [500/600], Loss: 0.0057 Epoch [15/64], Step [600/600], Loss: 0.0326 Epoch [16/64], Step [100/600], Loss: 0.0035 Epoch [16/64], Step [200/600], Loss: 0.0010 Epoch [16/64], Step [300/600], Loss: 0.0114 Epoch [16/64], Step [400/600], Loss: 0.0078 Epoch [16/64], Step [500/600], Loss: 0.0016 Epoch [16/64], Step [600/600], Loss: 0.0002 Epoch [17/64], Step [100/600], Loss: 0.0068 Epoch [17/64], Step [200/600], Loss: 0.0026 Epoch [17/64], Step [300/600], Loss: 0.0021 Epoch [17/64], Step [400/600], Loss: 0.0005 Epoch [17/64], Step [500/600], Loss: 0.0003 Epoch [17/64], Step [600/600], Loss: 0.0024 Epoch [18/64], Step [100/600], Loss: 0.0023 Epoch [18/64], Step [200/600], Loss: 0.0039 Epoch [18/64], Step [300/600], Loss: 0.0036 Epoch [18/64], Step [400/600], Loss: 0.0117 Epoch [18/64], Step [500/600], Loss: 0.0002 Epoch [18/64], Step [600/600], Loss: 0.0093 Epoch [19/64], Step [100/600], Loss: 0.0015 Epoch [19/64], Step [200/600], Loss: 0.0016 Epoch [19/64], Step [300/600], Loss: 0.0013 Epoch [19/64], Step [400/600], Loss: 0.0040 Epoch [19/64], Step [500/600], Loss: 0.0048 Epoch [19/64], Step [600/600], Loss: 0.0003 Epoch [20/64], Step [100/600], Loss: 0.0003 Epoch [20/64], Step [200/600], Loss: 0.0003 Epoch [20/64], Step [300/600], Loss: 0.0005 Epoch [20/64], Step [400/600], Loss: 0.0011 Epoch [20/64], Step [500/600], Loss: 0.0180 Epoch [20/64], Step [600/600], Loss: 0.0023 Epoch [21/64], Step [100/600], Loss: 0.0005 Epoch [21/64], Step [200/600], Loss: 0.0007 Epoch [21/64], Step [300/600], Loss: 0.0010 Epoch [21/64], Step [400/600], Loss: 0.0345 Epoch [21/64], Step [500/600], Loss: 0.0001 Epoch [21/64], Step [600/600], Loss: 0.0001 Epoch [22/64], Step [100/600], Loss: 0.0003 Epoch [22/64], Step [200/600], Loss: 0.0003 Epoch [22/64], Step [300/600], Loss: 0.0001 Epoch [22/64], Step [400/600], Loss: 0.0005 Epoch [22/64], Step [500/600], Loss: 0.0005 Epoch [22/64], Step [600/600], Loss: 0.0009 Epoch [23/64], Step [100/600], Loss: 0.0017 Epoch [23/64], Step [200/600], Loss: 0.0024 Epoch [23/64], Step [300/600], Loss: 0.0004 Epoch [23/64], Step [400/600], Loss: 0.0002 Epoch [23/64], Step [500/600], Loss: 0.0028 Epoch [23/64], Step [600/600], Loss: 0.0001 Epoch [24/64], Step [100/600], Loss: 0.0003 Epoch [24/64], Step [200/600], Loss: 0.0005 Epoch [24/64], Step [300/600], Loss: 0.0006 Epoch [24/64], Step [400/600], Loss: 0.0004 Epoch [24/64], Step [500/600], Loss: 0.0005 Epoch [24/64], Step [600/600], Loss: 0.0005 Epoch [25/64], Step [100/600], Loss: 0.0011 Epoch [25/64], Step [200/600], Loss: 0.0004 Epoch [25/64], Step [300/600], Loss: 0.0011 Epoch [25/64], Step [400/600], Loss: 0.0020 Epoch [25/64], Step [500/600], Loss: 0.0134 Epoch [25/64], Step [600/600], Loss: 0.0559 Epoch [26/64], Step [100/600], Loss: 0.0004 Epoch [26/64], Step [200/600], Loss: 0.0068 Epoch [26/64], Step [300/600], Loss: 0.0007 Epoch [26/64], Step [400/600], Loss: 0.0000 Epoch [26/64], Step [500/600], Loss: 0.0022 Epoch [26/64], Step [600/600], Loss: 0.0013 Epoch [27/64], Step [100/600], Loss: 0.0005 Epoch [27/64], Step [200/600], Loss: 0.0025 Epoch [27/64], Step [300/600], Loss: 0.0003 Epoch [27/64], Step [400/600], Loss: 0.0005 Epoch [27/64], Step [500/600], Loss: 0.0001 Epoch [27/64], Step [600/600], Loss: 0.0010 Epoch [28/64], Step [100/600], Loss: 0.0002 Epoch [28/64], Step [200/600], Loss: 0.0014 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0002 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0002 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0002 Epoch [29/64], Step [500/600], Loss: 0.0001 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0002 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0002 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0002 Epoch [31/64], Step [400/600], Loss: 0.0000 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0000 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0004 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0000 Epoch [32/64], Step [600/600], Loss: 0.0011 Epoch [33/64], Step [100/600], Loss: 0.1693 Epoch [33/64], Step [200/600], Loss: 0.0003 Epoch [33/64], Step [300/600], Loss: 0.0021 Epoch [33/64], Step [400/600], Loss: 0.0009 Epoch [33/64], Step [500/600], Loss: 0.0074 Epoch [33/64], Step [600/600], Loss: 0.0056 Epoch [34/64], Step [100/600], Loss: 0.0015 Epoch [34/64], Step [200/600], Loss: 0.0012 Epoch [34/64], Step [300/600], Loss: 0.0000 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0004 Epoch [34/64], Step [600/600], Loss: 0.0002 Epoch [35/64], Step [100/600], Loss: 0.0002 Epoch [35/64], Step [200/600], Loss: 0.0004 Epoch [35/64], Step [300/600], Loss: 0.0004 Epoch [35/64], Step [400/600], Loss: 0.0003 Epoch [35/64], Step [500/600], Loss: 0.0007 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0004 Epoch [36/64], Step [400/600], Loss: 0.0004 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0002 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0003 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0002 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0003 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0000 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0000 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.1032 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0010 Epoch [43/64], Step [100/600], Loss: 0.0004 Epoch [43/64], Step [200/600], Loss: 0.0015 Epoch [43/64], Step [300/600], Loss: 0.0058 Epoch [43/64], Step [400/600], Loss: 0.0001 Epoch [43/64], Step [500/600], Loss: 0.0009 Epoch [43/64], Step [600/600], Loss: 0.0006 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0012 Epoch [44/64], Step [400/600], Loss: 0.0010 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0015 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0002 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0004 Epoch [46/64], Step [500/600], Loss: 0.0002 Epoch [46/64], Step [600/600], Loss: 0.0004 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0003 Epoch [48/64], Step [600/600], Loss: 0.0003 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0001 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0001 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0002 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0538 Epoch [53/64], Step [100/600], Loss: 0.0006 Epoch [53/64], Step [200/600], Loss: 0.0009 Epoch [53/64], Step [300/600], Loss: 0.0006 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0007 Epoch [53/64], Step [600/600], Loss: 0.0004 Epoch [54/64], Step [100/600], Loss: 0.0003 Epoch [54/64], Step [200/600], Loss: 0.0003 Epoch [54/64], Step [300/600], Loss: 0.0002 Epoch [54/64], Step [400/600], Loss: 0.0004 Epoch [54/64], Step [500/600], Loss: 0.0003 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0004 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0002 Epoch [56/64], Step [300/600], Loss: 0.0002 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0002 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0051 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0751 Epoch [63/64], Step [300/600], Loss: 0.0005 Epoch [63/64], Step [400/600], Loss: 0.0029 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0061 Epoch [64/64], Step [100/600], Loss: 0.0003 Epoch [64/64], Step [200/600], Loss: 0.0003 Epoch [64/64], Step [300/600], Loss: 0.0003 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 376.919 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins11670564860248512651.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Sending e-mails to: abode@illinois.edu Finished: SUCCESS