Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98514 queued and waiting for resources srun: job 98514 has been allocated resources Running benchmark on hydro04 Epoch [1/64], Step [100/600], Loss: 0.1553 Epoch [1/64], Step [200/600], Loss: 0.2270 Epoch [1/64], Step [300/600], Loss: 0.0527 Epoch [1/64], Step [400/600], Loss: 0.0969 Epoch [1/64], Step [500/600], Loss: 0.0778 Epoch [1/64], Step [600/600], Loss: 0.0431 Epoch [2/64], Step [100/600], Loss: 0.0196 Epoch [2/64], Step [200/600], Loss: 0.0199 Epoch [2/64], Step [300/600], Loss: 0.0492 Epoch [2/64], Step [400/600], Loss: 0.0531 Epoch [2/64], Step [500/600], Loss: 0.0131 Epoch [2/64], Step [600/600], Loss: 0.0989 Epoch [3/64], Step [100/600], Loss: 0.0140 Epoch [3/64], Step [200/600], Loss: 0.0259 Epoch [3/64], Step [300/600], Loss: 0.0152 Epoch [3/64], Step [400/600], Loss: 0.0344 Epoch [3/64], Step [500/600], Loss: 0.0294 Epoch [3/64], Step [600/600], Loss: 0.0208 Epoch [4/64], Step [100/600], Loss: 0.0287 Epoch [4/64], Step [200/600], Loss: 0.0278 Epoch [4/64], Step [300/600], Loss: 0.0229 Epoch [4/64], Step [400/600], Loss: 0.0206 Epoch [4/64], Step [500/600], Loss: 0.0084 Epoch [4/64], Step [600/600], Loss: 0.0062 Epoch [5/64], Step [100/600], Loss: 0.0046 Epoch [5/64], Step [200/600], Loss: 0.0162 Epoch [5/64], Step [300/600], Loss: 0.0694 Epoch [5/64], Step [400/600], Loss: 0.0216 Epoch [5/64], Step [500/600], Loss: 0.0691 Epoch [5/64], Step [600/600], Loss: 0.0224 Epoch [6/64], Step [100/600], Loss: 0.0336 Epoch [6/64], Step [200/600], Loss: 0.0184 Epoch [6/64], Step [300/600], Loss: 0.0068 Epoch [6/64], Step [400/600], Loss: 0.0080 Epoch [6/64], Step [500/600], Loss: 0.0193 Epoch [6/64], Step [600/600], Loss: 0.0304 Epoch [7/64], Step [100/600], Loss: 0.0124 Epoch [7/64], Step [200/600], Loss: 0.0028 Epoch [7/64], Step [300/600], Loss: 0.0030 Epoch [7/64], Step [400/600], Loss: 0.0099 Epoch [7/64], Step [500/600], Loss: 0.0028 Epoch [7/64], Step [600/600], Loss: 0.0038 Epoch [8/64], Step [100/600], Loss: 0.0029 Epoch [8/64], Step [200/600], Loss: 0.0027 Epoch [8/64], Step [300/600], Loss: 0.0277 Epoch [8/64], Step [400/600], Loss: 0.0321 Epoch [8/64], Step [500/600], Loss: 0.0021 Epoch [8/64], Step [600/600], Loss: 0.0169 Epoch [9/64], Step [100/600], Loss: 0.0115 Epoch [9/64], Step [200/600], Loss: 0.0093 Epoch [9/64], Step [300/600], Loss: 0.0054 Epoch [9/64], Step [400/600], Loss: 0.0181 Epoch [9/64], Step [500/600], Loss: 0.0119 Epoch [9/64], Step [600/600], Loss: 0.0076 Epoch [10/64], Step [100/600], Loss: 0.0005 Epoch [10/64], Step [200/600], Loss: 0.0027 Epoch [10/64], Step [300/600], Loss: 0.0004 Epoch [10/64], Step [400/600], Loss: 0.0020 Epoch [10/64], Step [500/600], Loss: 0.0007 Epoch [10/64], Step [600/600], Loss: 0.0020 Epoch [11/64], Step [100/600], Loss: 0.0011 Epoch [11/64], Step [200/600], Loss: 0.0186 Epoch [11/64], Step [300/600], Loss: 0.0008 Epoch [11/64], Step [400/600], Loss: 0.0111 Epoch [11/64], Step [500/600], Loss: 0.0207 Epoch [11/64], Step [600/600], Loss: 0.0038 Epoch [12/64], Step [100/600], Loss: 0.0017 Epoch [12/64], Step [200/600], Loss: 0.0010 Epoch [12/64], Step [300/600], Loss: 0.0032 Epoch [12/64], Step [400/600], Loss: 0.0112 Epoch [12/64], Step [500/600], Loss: 0.0021 Epoch [12/64], Step [600/600], Loss: 0.0016 Epoch [13/64], Step [100/600], Loss: 0.0075 Epoch [13/64], Step [200/600], Loss: 0.0013 Epoch [13/64], Step [300/600], Loss: 0.0002 Epoch [13/64], Step [400/600], Loss: 0.0166 Epoch [13/64], Step [500/600], Loss: 0.0064 Epoch [13/64], Step [600/600], Loss: 0.0019 Epoch [14/64], Step [100/600], Loss: 0.0051 Epoch [14/64], Step [200/600], Loss: 0.0066 Epoch [14/64], Step [300/600], Loss: 0.0006 Epoch [14/64], Step [400/600], Loss: 0.0001 Epoch [14/64], Step [500/600], Loss: 0.0243 Epoch [14/64], Step [600/600], Loss: 0.0103 Epoch [15/64], Step [100/600], Loss: 0.0025 Epoch [15/64], Step [200/600], Loss: 0.0008 Epoch [15/64], Step [300/600], Loss: 0.0009 Epoch [15/64], Step [400/600], Loss: 0.0020 Epoch [15/64], Step [500/600], Loss: 0.0185 Epoch [15/64], Step [600/600], Loss: 0.0008 Epoch [16/64], Step [100/600], Loss: 0.0137 Epoch [16/64], Step [200/600], Loss: 0.0002 Epoch [16/64], Step [300/600], Loss: 0.0024 Epoch [16/64], Step [400/600], Loss: 0.0022 Epoch [16/64], Step [500/600], Loss: 0.0018 Epoch [16/64], Step [600/600], Loss: 0.0077 Epoch [17/64], Step [100/600], Loss: 0.0032 Epoch [17/64], Step [200/600], Loss: 0.0003 Epoch [17/64], Step [300/600], Loss: 0.0029 Epoch [17/64], Step [400/600], Loss: 0.0012 Epoch [17/64], Step [500/600], Loss: 0.0007 Epoch [17/64], Step [600/600], Loss: 0.0055 Epoch [18/64], Step [100/600], Loss: 0.0034 Epoch [18/64], Step [200/600], Loss: 0.0034 Epoch [18/64], Step [300/600], Loss: 0.0027 Epoch [18/64], Step [400/600], Loss: 0.0010 Epoch [18/64], Step [500/600], Loss: 0.0010 Epoch [18/64], Step [600/600], Loss: 0.0028 Epoch [19/64], Step [100/600], Loss: 0.0187 Epoch [19/64], Step [200/600], Loss: 0.0103 Epoch [19/64], Step [300/600], Loss: 0.0015 Epoch [19/64], Step [400/600], Loss: 0.0002 Epoch [19/64], Step [500/600], Loss: 0.0013 Epoch [19/64], Step [600/600], Loss: 0.0081 Epoch [20/64], Step [100/600], Loss: 0.0010 Epoch [20/64], Step [200/600], Loss: 0.0038 Epoch [20/64], Step [300/600], Loss: 0.0001 Epoch [20/64], Step [400/600], Loss: 0.0014 Epoch [20/64], Step [500/600], Loss: 0.0082 Epoch [20/64], Step [600/600], Loss: 0.0007 Epoch [21/64], Step [100/600], Loss: 0.0010 Epoch [21/64], Step [200/600], Loss: 0.0005 Epoch [21/64], Step [300/600], Loss: 0.0014 Epoch [21/64], Step [400/600], Loss: 0.0010 Epoch [21/64], Step [500/600], Loss: 0.0002 Epoch [21/64], Step [600/600], Loss: 0.0001 Epoch [22/64], Step [100/600], Loss: 0.0025 Epoch [22/64], Step [200/600], Loss: 0.0011 Epoch [22/64], Step [300/600], Loss: 0.0021 Epoch [22/64], Step [400/600], Loss: 0.0009 Epoch [22/64], Step [500/600], Loss: 0.0014 Epoch [22/64], Step [600/600], Loss: 0.0009 Epoch [23/64], Step [100/600], Loss: 0.0005 Epoch [23/64], Step [200/600], Loss: 0.0213 Epoch [23/64], Step [300/600], Loss: 0.0017 Epoch [23/64], Step [400/600], Loss: 0.0014 Epoch [23/64], Step [500/600], Loss: 0.0017 Epoch [23/64], Step [600/600], Loss: 0.0029 Epoch [24/64], Step [100/600], Loss: 0.0002 Epoch [24/64], Step [200/600], Loss: 0.0009 Epoch [24/64], Step [300/600], Loss: 0.0004 Epoch [24/64], Step [400/600], Loss: 0.0009 Epoch [24/64], Step [500/600], Loss: 0.0005 Epoch [24/64], Step [600/600], Loss: 0.0018 Epoch [25/64], Step [100/600], Loss: 0.0004 Epoch [25/64], Step [200/600], Loss: 0.0005 Epoch [25/64], Step [300/600], Loss: 0.0010 Epoch [25/64], Step [400/600], Loss: 0.0002 Epoch [25/64], Step [500/600], Loss: 0.0001 Epoch [25/64], Step [600/600], Loss: 0.0001 Epoch [26/64], Step [100/600], Loss: 0.0001 Epoch [26/64], Step [200/600], Loss: 0.0000 Epoch [26/64], Step [300/600], Loss: 0.0001 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0002 Epoch [26/64], Step [600/600], Loss: 0.0002 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0003 Epoch [27/64], Step [300/600], Loss: 0.0003 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0005 Epoch [27/64], Step [600/600], Loss: 0.0001 Epoch [28/64], Step [100/600], Loss: 0.0014 Epoch [28/64], Step [200/600], Loss: 0.0000 Epoch [28/64], Step [300/600], Loss: 0.0002 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0000 Epoch [29/64], Step [100/600], Loss: 0.0002 Epoch [29/64], Step [200/600], Loss: 0.0000 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0004 Epoch [29/64], Step [500/600], Loss: 0.0001 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0002 Epoch [30/64], Step [200/600], Loss: 0.0000 Epoch [30/64], Step [300/600], Loss: 0.0002 Epoch [30/64], Step [400/600], Loss: 0.0005 Epoch [30/64], Step [500/600], Loss: 0.0029 Epoch [30/64], Step [600/600], Loss: 0.0252 Epoch [31/64], Step [100/600], Loss: 0.0192 Epoch [31/64], Step [200/600], Loss: 0.0005 Epoch [31/64], Step [300/600], Loss: 0.0016 Epoch [31/64], Step [400/600], Loss: 0.0004 Epoch [31/64], Step [500/600], Loss: 0.0037 Epoch [31/64], Step [600/600], Loss: 0.0075 Epoch [32/64], Step [100/600], Loss: 0.0021 Epoch [32/64], Step [200/600], Loss: 0.0008 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0005 Epoch [32/64], Step [500/600], Loss: 0.0004 Epoch [32/64], Step [600/600], Loss: 0.0003 Epoch [33/64], Step [100/600], Loss: 0.0018 Epoch [33/64], Step [200/600], Loss: 0.0004 Epoch [33/64], Step [300/600], Loss: 0.0000 Epoch [33/64], Step [400/600], Loss: 0.0000 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0003 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0003 Epoch [34/64], Step [300/600], Loss: 0.0010 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0021 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0004 Epoch [35/64], Step [300/600], Loss: 0.0092 Epoch [35/64], Step [400/600], Loss: 0.0005 Epoch [35/64], Step [500/600], Loss: 0.0128 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0089 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0045 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0041 Epoch [37/64], Step [100/600], Loss: 0.0004 Epoch [37/64], Step [200/600], Loss: 0.0031 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0002 Epoch [37/64], Step [500/600], Loss: 0.0023 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0009 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0002 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0003 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0002 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0000 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0002 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0002 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0047 Epoch [46/64], Step [200/600], Loss: 0.0494 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0238 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0021 Epoch [47/64], Step [300/600], Loss: 0.0011 Epoch [47/64], Step [400/600], Loss: 0.0006 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0002 Epoch [48/64], Step [400/600], Loss: 0.0002 Epoch [48/64], Step [500/600], Loss: 0.0005 Epoch [48/64], Step [600/600], Loss: 0.0011 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0002 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0081 Epoch [57/64], Step [600/600], Loss: 0.0019 Epoch [58/64], Step [100/600], Loss: 0.0058 Epoch [58/64], Step [200/600], Loss: 0.0051 Epoch [58/64], Step [300/600], Loss: 0.0013 Epoch [58/64], Step [400/600], Loss: 0.0085 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0007 Epoch [59/64], Step [300/600], Loss: 0.0005 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0001 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0002 Epoch [61/64], Step [600/600], Loss: 0.0002 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 381.023 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins2708827781300396252.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS