Started by user Jeremy Enos Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96830 queued and waiting for resources srun: job 96830 has been allocated resources Running benchmark on hydro01 Epoch [1/64], Step [100/600], Loss: 0.2292 Epoch [1/64], Step [200/600], Loss: 0.1665 Epoch [1/64], Step [300/600], Loss: 0.1111 Epoch [1/64], Step [400/600], Loss: 0.0880 Epoch [1/64], Step [500/600], Loss: 0.1673 Epoch [1/64], Step [600/600], Loss: 0.1431 Epoch [2/64], Step [100/600], Loss: 0.0732 Epoch [2/64], Step [200/600], Loss: 0.0535 Epoch [2/64], Step [300/600], Loss: 0.0650 Epoch [2/64], Step [400/600], Loss: 0.0235 Epoch [2/64], Step [500/600], Loss: 0.0213 Epoch [2/64], Step [600/600], Loss: 0.0287 Epoch [3/64], Step [100/600], Loss: 0.1105 Epoch [3/64], Step [200/600], Loss: 0.0132 Epoch [3/64], Step [300/600], Loss: 0.0403 Epoch [3/64], Step [400/600], Loss: 0.0427 Epoch [3/64], Step [500/600], Loss: 0.0778 Epoch [3/64], Step [600/600], Loss: 0.0148 Epoch [4/64], Step [100/600], Loss: 0.0129 Epoch [4/64], Step [200/600], Loss: 0.0183 Epoch [4/64], Step [300/600], Loss: 0.0518 Epoch [4/64], Step [400/600], Loss: 0.0213 Epoch [4/64], Step [500/600], Loss: 0.0335 Epoch [4/64], Step [600/600], Loss: 0.0078 Epoch [5/64], Step [100/600], Loss: 0.0315 Epoch [5/64], Step [200/600], Loss: 0.0206 Epoch [5/64], Step [300/600], Loss: 0.0405 Epoch [5/64], Step [400/600], Loss: 0.0546 Epoch [5/64], Step [500/600], Loss: 0.0784 Epoch [5/64], Step [600/600], Loss: 0.0453 Epoch [6/64], Step [100/600], Loss: 0.0481 Epoch [6/64], Step [200/600], Loss: 0.0279 Epoch [6/64], Step [300/600], Loss: 0.0025 Epoch [6/64], Step [400/600], Loss: 0.0080 Epoch [6/64], Step [500/600], Loss: 0.0085 Epoch [6/64], Step [600/600], Loss: 0.0160 Epoch [7/64], Step [100/600], Loss: 0.0068 Epoch [7/64], Step [200/600], Loss: 0.0057 Epoch [7/64], Step [300/600], Loss: 0.0194 Epoch [7/64], Step [400/600], Loss: 0.0118 Epoch [7/64], Step [500/600], Loss: 0.0115 Epoch [7/64], Step [600/600], Loss: 0.0213 Epoch [8/64], Step [100/600], Loss: 0.0087 Epoch [8/64], Step [200/600], Loss: 0.0082 Epoch [8/64], Step [300/600], Loss: 0.0486 Epoch [8/64], Step [400/600], Loss: 0.0217 Epoch [8/64], Step [500/600], Loss: 0.0257 Epoch [8/64], Step [600/600], Loss: 0.0313 Epoch [9/64], Step [100/600], Loss: 0.0012 Epoch [9/64], Step [200/600], Loss: 0.0354 Epoch [9/64], Step [300/600], Loss: 0.0021 Epoch [9/64], Step [400/600], Loss: 0.0062 Epoch [9/64], Step [500/600], Loss: 0.0040 Epoch [9/64], Step [600/600], Loss: 0.0014 Epoch [10/64], Step [100/600], Loss: 0.0033 Epoch [10/64], Step [200/600], Loss: 0.0411 Epoch [10/64], Step [300/600], Loss: 0.0028 Epoch [10/64], Step [400/600], Loss: 0.0068 Epoch [10/64], Step [500/600], Loss: 0.0052 Epoch [10/64], Step [600/600], Loss: 0.0239 Epoch [11/64], Step [100/600], Loss: 0.0072 Epoch [11/64], Step [200/600], Loss: 0.0024 Epoch [11/64], Step [300/600], Loss: 0.0095 Epoch [11/64], Step [400/600], Loss: 0.0043 Epoch [11/64], Step [500/600], Loss: 0.0022 Epoch [11/64], Step [600/600], Loss: 0.0269 Epoch [12/64], Step [100/600], Loss: 0.0010 Epoch [12/64], Step [200/600], Loss: 0.0146 Epoch [12/64], Step [300/600], Loss: 0.0055 Epoch [12/64], Step [400/600], Loss: 0.0029 Epoch [12/64], Step [500/600], Loss: 0.0085 Epoch [12/64], Step [600/600], Loss: 0.0019 Epoch [13/64], Step [100/600], Loss: 0.0067 Epoch [13/64], Step [200/600], Loss: 0.0046 Epoch [13/64], Step [300/600], Loss: 0.0017 Epoch [13/64], Step [400/600], Loss: 0.0193 Epoch [13/64], Step [500/600], Loss: 0.0053 Epoch [13/64], Step [600/600], Loss: 0.0123 Epoch [14/64], Step [100/600], Loss: 0.0004 Epoch [14/64], Step [200/600], Loss: 0.0042 Epoch [14/64], Step [300/600], Loss: 0.0044 Epoch [14/64], Step [400/600], Loss: 0.0006 Epoch [14/64], Step [500/600], Loss: 0.0045 Epoch [14/64], Step [600/600], Loss: 0.0026 Epoch [15/64], Step [100/600], Loss: 0.0125 Epoch [15/64], Step [200/600], Loss: 0.0015 Epoch [15/64], Step [300/600], Loss: 0.0006 Epoch [15/64], Step [400/600], Loss: 0.0050 Epoch [15/64], Step [500/600], Loss: 0.0002 Epoch [15/64], Step [600/600], Loss: 0.0078 Epoch [16/64], Step [100/600], Loss: 0.0145 Epoch [16/64], Step [200/600], Loss: 0.0009 Epoch [16/64], Step [300/600], Loss: 0.0022 Epoch [16/64], Step [400/600], Loss: 0.0217 Epoch [16/64], Step [500/600], Loss: 0.0103 Epoch [16/64], Step [600/600], Loss: 0.0004 Epoch [17/64], Step [100/600], Loss: 0.0004 Epoch [17/64], Step [200/600], Loss: 0.0011 Epoch [17/64], Step [300/600], Loss: 0.0021 Epoch [17/64], Step [400/600], Loss: 0.0048 Epoch [17/64], Step [500/600], Loss: 0.0003 Epoch [17/64], Step [600/600], Loss: 0.0008 Epoch [18/64], Step [100/600], Loss: 0.0003 Epoch [18/64], Step [200/600], Loss: 0.0008 Epoch [18/64], Step [300/600], Loss: 0.0009 Epoch [18/64], Step [400/600], Loss: 0.0079 Epoch [18/64], Step [500/600], Loss: 0.0023 Epoch [18/64], Step [600/600], Loss: 0.0103 Epoch [19/64], Step [100/600], Loss: 0.0041 Epoch [19/64], Step [200/600], Loss: 0.0013 Epoch [19/64], Step [300/600], Loss: 0.0065 Epoch [19/64], Step [400/600], Loss: 0.0021 Epoch [19/64], Step [500/600], Loss: 0.0017 Epoch [19/64], Step [600/600], Loss: 0.0143 Epoch [20/64], Step [100/600], Loss: 0.0003 Epoch [20/64], Step [200/600], Loss: 0.0002 Epoch [20/64], Step [300/600], Loss: 0.0018 Epoch [20/64], Step [400/600], Loss: 0.0004 Epoch [20/64], Step [500/600], Loss: 0.0018 Epoch [20/64], Step [600/600], Loss: 0.0094 Epoch [21/64], Step [100/600], Loss: 0.0133 Epoch [21/64], Step [200/600], Loss: 0.0016 Epoch [21/64], Step [300/600], Loss: 0.0020 Epoch [21/64], Step [400/600], Loss: 0.0007 Epoch [21/64], Step [500/600], Loss: 0.0282 Epoch [21/64], Step [600/600], Loss: 0.0015 Epoch [22/64], Step [100/600], Loss: 0.0009 Epoch [22/64], Step [200/600], Loss: 0.0003 Epoch [22/64], Step [300/600], Loss: 0.0023 Epoch [22/64], Step [400/600], Loss: 0.0009 Epoch [22/64], Step [500/600], Loss: 0.0005 Epoch [22/64], Step [600/600], Loss: 0.0160 Epoch [23/64], Step [100/600], Loss: 0.0018 Epoch [23/64], Step [200/600], Loss: 0.0041 Epoch [23/64], Step [300/600], Loss: 0.0021 Epoch [23/64], Step [400/600], Loss: 0.0005 Epoch [23/64], Step [500/600], Loss: 0.0030 Epoch [23/64], Step [600/600], Loss: 0.0004 Epoch [24/64], Step [100/600], Loss: 0.0004 Epoch [24/64], Step [200/600], Loss: 0.0004 Epoch [24/64], Step [300/600], Loss: 0.0003 Epoch [24/64], Step [400/600], Loss: 0.0005 Epoch [24/64], Step [500/600], Loss: 0.0002 Epoch [24/64], Step [600/600], Loss: 0.0003 Epoch [25/64], Step [100/600], Loss: 0.0003 Epoch [25/64], Step [200/600], Loss: 0.0002 Epoch [25/64], Step [300/600], Loss: 0.0009 Epoch [25/64], Step [400/600], Loss: 0.0001 Epoch [25/64], Step [500/600], Loss: 0.0002 Epoch [25/64], Step [600/600], Loss: 0.0002 Epoch [26/64], Step [100/600], Loss: 0.0000 Epoch [26/64], Step [200/600], Loss: 0.0004 Epoch [26/64], Step [300/600], Loss: 0.0018 Epoch [26/64], Step [400/600], Loss: 0.1208 Epoch [26/64], Step [500/600], Loss: 0.0115 Epoch [26/64], Step [600/600], Loss: 0.0020 Epoch [27/64], Step [100/600], Loss: 0.0015 Epoch [27/64], Step [200/600], Loss: 0.0077 Epoch [27/64], Step [300/600], Loss: 0.0004 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0163 Epoch [27/64], Step [600/600], Loss: 0.0047 Epoch [28/64], Step [100/600], Loss: 0.0015 Epoch [28/64], Step [200/600], Loss: 0.0005 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0007 Epoch [28/64], Step [500/600], Loss: 0.0012 Epoch [28/64], Step [600/600], Loss: 0.0003 Epoch [29/64], Step [100/600], Loss: 0.0005 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0000 Epoch [29/64], Step [400/600], Loss: 0.0004 Epoch [29/64], Step [500/600], Loss: 0.0001 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0002 Epoch [30/64], Step [200/600], Loss: 0.0003 Epoch [30/64], Step [300/600], Loss: 0.0002 Epoch [30/64], Step [400/600], Loss: 0.0004 Epoch [30/64], Step [500/600], Loss: 0.0006 Epoch [30/64], Step [600/600], Loss: 0.0002 Epoch [31/64], Step [100/600], Loss: 0.0000 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0004 Epoch [31/64], Step [600/600], Loss: 0.0004 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0000 Epoch [32/64], Step [300/600], Loss: 0.0004 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0002 Epoch [32/64], Step [600/600], Loss: 0.0000 Epoch [33/64], Step [100/600], Loss: 0.0005 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0000 Epoch [33/64], Step [400/600], Loss: 0.0002 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0000 Epoch [34/64], Step [100/600], Loss: 0.0000 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0000 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0000 Epoch [35/64], Step [400/600], Loss: 0.0000 Epoch [35/64], Step [500/600], Loss: 0.0884 Epoch [35/64], Step [600/600], Loss: 0.0075 Epoch [36/64], Step [100/600], Loss: 0.0157 Epoch [36/64], Step [200/600], Loss: 0.0044 Epoch [36/64], Step [300/600], Loss: 0.0003 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0034 Epoch [36/64], Step [600/600], Loss: 0.0007 Epoch [37/64], Step [100/600], Loss: 0.0008 Epoch [37/64], Step [200/600], Loss: 0.0003 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0007 Epoch [38/64], Step [600/600], Loss: 0.0004 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0002 Epoch [40/64], Step [100/600], Loss: 0.0000 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0002 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0002 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0005 Epoch [41/64], Step [500/600], Loss: 0.0003 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0003 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0002 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0001 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0002 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.2302 Epoch [46/64], Step [600/600], Loss: 0.0003 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0003 Epoch [47/64], Step [300/600], Loss: 0.0016 Epoch [47/64], Step [400/600], Loss: 0.0031 Epoch [47/64], Step [500/600], Loss: 0.0012 Epoch [47/64], Step [600/600], Loss: 0.0732 Epoch [48/64], Step [100/600], Loss: 0.0002 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0024 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0004 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0004 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0003 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0003 Epoch [50/64], Step [600/600], Loss: 0.0005 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0002 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0002 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0001 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0001 Epoch [54/64], Step [600/600], Loss: 0.0009 Epoch [55/64], Step [100/600], Loss: 0.0875 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0014 Epoch [55/64], Step [400/600], Loss: 0.0011 Epoch [55/64], Step [500/600], Loss: 0.0008 Epoch [55/64], Step [600/600], Loss: 0.0007 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0005 Epoch [56/64], Step [400/600], Loss: 0.0002 Epoch [56/64], Step [500/600], Loss: 0.0013 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0005 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0001 Epoch [58/64], Step [100/600], Loss: 0.0002 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0002 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0002 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0002 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0001 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0002 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0001 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 520.492 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins371294233692568830.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS