Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 97594 queued and waiting for resources srun: job 97594 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2144 Epoch [1/64], Step [200/600], Loss: 0.1462 Epoch [1/64], Step [300/600], Loss: 0.0933 Epoch [1/64], Step [400/600], Loss: 0.0791 Epoch [1/64], Step [500/600], Loss: 0.0389 Epoch [1/64], Step [600/600], Loss: 0.0513 Epoch [2/64], Step [100/600], Loss: 0.0757 Epoch [2/64], Step [200/600], Loss: 0.0823 Epoch [2/64], Step [300/600], Loss: 0.0209 Epoch [2/64], Step [400/600], Loss: 0.0331 Epoch [2/64], Step [500/600], Loss: 0.0352 Epoch [2/64], Step [600/600], Loss: 0.0262 Epoch [3/64], Step [100/600], Loss: 0.0848 Epoch [3/64], Step [200/600], Loss: 0.0637 Epoch [3/64], Step [300/600], Loss: 0.0740 Epoch [3/64], Step [400/600], Loss: 0.0889 Epoch [3/64], Step [500/600], Loss: 0.0111 Epoch [3/64], Step [600/600], Loss: 0.0324 Epoch [4/64], Step [100/600], Loss: 0.0188 Epoch [4/64], Step [200/600], Loss: 0.0170 Epoch [4/64], Step [300/600], Loss: 0.0774 Epoch [4/64], Step [400/600], Loss: 0.0641 Epoch [4/64], Step [500/600], Loss: 0.1351 Epoch [4/64], Step [600/600], Loss: 0.0296 Epoch [5/64], Step [100/600], Loss: 0.0154 Epoch [5/64], Step [200/600], Loss: 0.0255 Epoch [5/64], Step [300/600], Loss: 0.0370 Epoch [5/64], Step [400/600], Loss: 0.0159 Epoch [5/64], Step [500/600], Loss: 0.0156 Epoch [5/64], Step [600/600], Loss: 0.0178 Epoch [6/64], Step [100/600], Loss: 0.0186 Epoch [6/64], Step [200/600], Loss: 0.0723 Epoch [6/64], Step [300/600], Loss: 0.0104 Epoch [6/64], Step [400/600], Loss: 0.0054 Epoch [6/64], Step [500/600], Loss: 0.0272 Epoch [6/64], Step [600/600], Loss: 0.0225 Epoch [7/64], Step [100/600], Loss: 0.0253 Epoch [7/64], Step [200/600], Loss: 0.0379 Epoch [7/64], Step [300/600], Loss: 0.0364 Epoch [7/64], Step [400/600], Loss: 0.0175 Epoch [7/64], Step [500/600], Loss: 0.0088 Epoch [7/64], Step [600/600], Loss: 0.0072 Epoch [8/64], Step [100/600], Loss: 0.0014 Epoch [8/64], Step [200/600], Loss: 0.0314 Epoch [8/64], Step [300/600], Loss: 0.0022 Epoch [8/64], Step [400/600], Loss: 0.0171 Epoch [8/64], Step [500/600], Loss: 0.0137 Epoch [8/64], Step [600/600], Loss: 0.0544 Epoch [9/64], Step [100/600], Loss: 0.0421 Epoch [9/64], Step [200/600], Loss: 0.0109 Epoch [9/64], Step [300/600], Loss: 0.0119 Epoch [9/64], Step [400/600], Loss: 0.0219 Epoch [9/64], Step [500/600], Loss: 0.0048 Epoch [9/64], Step [600/600], Loss: 0.0047 Epoch [10/64], Step [100/600], Loss: 0.0049 Epoch [10/64], Step [200/600], Loss: 0.0154 Epoch [10/64], Step [300/600], Loss: 0.0035 Epoch [10/64], Step [400/600], Loss: 0.0013 Epoch [10/64], Step [500/600], Loss: 0.0025 Epoch [10/64], Step [600/600], Loss: 0.0112 Epoch [11/64], Step [100/600], Loss: 0.0085 Epoch [11/64], Step [200/600], Loss: 0.0046 Epoch [11/64], Step [300/600], Loss: 0.0059 Epoch [11/64], Step [400/600], Loss: 0.0204 Epoch [11/64], Step [500/600], Loss: 0.0700 Epoch [11/64], Step [600/600], Loss: 0.0026 Epoch [12/64], Step [100/600], Loss: 0.0039 Epoch [12/64], Step [200/600], Loss: 0.0081 Epoch [12/64], Step [300/600], Loss: 0.0076 Epoch [12/64], Step [400/600], Loss: 0.0047 Epoch [12/64], Step [500/600], Loss: 0.0216 Epoch [12/64], Step [600/600], Loss: 0.0005 Epoch [13/64], Step [100/600], Loss: 0.0037 Epoch [13/64], Step [200/600], Loss: 0.0156 Epoch [13/64], Step [300/600], Loss: 0.0065 Epoch [13/64], Step [400/600], Loss: 0.0209 Epoch [13/64], Step [500/600], Loss: 0.0018 Epoch [13/64], Step [600/600], Loss: 0.0156 Epoch [14/64], Step [100/600], Loss: 0.0051 Epoch [14/64], Step [200/600], Loss: 0.0077 Epoch [14/64], Step [300/600], Loss: 0.0004 Epoch [14/64], Step [400/600], Loss: 0.0044 Epoch [14/64], Step [500/600], Loss: 0.0028 Epoch [14/64], Step [600/600], Loss: 0.0012 Epoch [15/64], Step [100/600], Loss: 0.0010 Epoch [15/64], Step [200/600], Loss: 0.0029 Epoch [15/64], Step [300/600], Loss: 0.0009 Epoch [15/64], Step [400/600], Loss: 0.0130 Epoch [15/64], Step [500/600], Loss: 0.0103 Epoch [15/64], Step [600/600], Loss: 0.0029 Epoch [16/64], Step [100/600], Loss: 0.0010 Epoch [16/64], Step [200/600], Loss: 0.0019 Epoch [16/64], Step [300/600], Loss: 0.0041 Epoch [16/64], Step [400/600], Loss: 0.0180 Epoch [16/64], Step [500/600], Loss: 0.0005 Epoch [16/64], Step [600/600], Loss: 0.0147 Epoch [17/64], Step [100/600], Loss: 0.0128 Epoch [17/64], Step [200/600], Loss: 0.0060 Epoch [17/64], Step [300/600], Loss: 0.0151 Epoch [17/64], Step [400/600], Loss: 0.0034 Epoch [17/64], Step [500/600], Loss: 0.0030 Epoch [17/64], Step [600/600], Loss: 0.0064 Epoch [18/64], Step [100/600], Loss: 0.0012 Epoch [18/64], Step [200/600], Loss: 0.0020 Epoch [18/64], Step [300/600], Loss: 0.0001 Epoch [18/64], Step [400/600], Loss: 0.0064 Epoch [18/64], Step [500/600], Loss: 0.0063 Epoch [18/64], Step [600/600], Loss: 0.0046 Epoch [19/64], Step [100/600], Loss: 0.0006 Epoch [19/64], Step [200/600], Loss: 0.0005 Epoch [19/64], Step [300/600], Loss: 0.0004 Epoch [19/64], Step [400/600], Loss: 0.0060 Epoch [19/64], Step [500/600], Loss: 0.0004 Epoch [19/64], Step [600/600], Loss: 0.0005 Epoch [20/64], Step [100/600], Loss: 0.0059 Epoch [20/64], Step [200/600], Loss: 0.0015 Epoch [20/64], Step [300/600], Loss: 0.0003 Epoch [20/64], Step [400/600], Loss: 0.0007 Epoch [20/64], Step [500/600], Loss: 0.0002 Epoch [20/64], Step [600/600], Loss: 0.0011 Epoch [21/64], Step [100/600], Loss: 0.0047 Epoch [21/64], Step [200/600], Loss: 0.0038 Epoch [21/64], Step [300/600], Loss: 0.0052 Epoch [21/64], Step [400/600], Loss: 0.0010 Epoch [21/64], Step [500/600], Loss: 0.0021 Epoch [21/64], Step [600/600], Loss: 0.0054 Epoch [22/64], Step [100/600], Loss: 0.0008 Epoch [22/64], Step [200/600], Loss: 0.0040 Epoch [22/64], Step [300/600], Loss: 0.0030 Epoch [22/64], Step [400/600], Loss: 0.0018 Epoch [22/64], Step [500/600], Loss: 0.0004 Epoch [22/64], Step [600/600], Loss: 0.0042 Epoch [23/64], Step [100/600], Loss: 0.0001 Epoch [23/64], Step [200/600], Loss: 0.0004 Epoch [23/64], Step [300/600], Loss: 0.0004 Epoch [23/64], Step [400/600], Loss: 0.0002 Epoch [23/64], Step [500/600], Loss: 0.0340 Epoch [23/64], Step [600/600], Loss: 0.0006 Epoch [24/64], Step [100/600], Loss: 0.0004 Epoch [24/64], Step [200/600], Loss: 0.0004 Epoch [24/64], Step [300/600], Loss: 0.0036 Epoch [24/64], Step [400/600], Loss: 0.0003 Epoch [24/64], Step [500/600], Loss: 0.0004 Epoch [24/64], Step [600/600], Loss: 0.0005 Epoch [25/64], Step [100/600], Loss: 0.0010 Epoch [25/64], Step [200/600], Loss: 0.0003 Epoch [25/64], Step [300/600], Loss: 0.0002 Epoch [25/64], Step [400/600], Loss: 0.0029 Epoch [25/64], Step [500/600], Loss: 0.0000 Epoch [25/64], Step [600/600], Loss: 0.0005 Epoch [26/64], Step [100/600], Loss: 0.0003 Epoch [26/64], Step [200/600], Loss: 0.0014 Epoch [26/64], Step [300/600], Loss: 0.0013 Epoch [26/64], Step [400/600], Loss: 0.0010 Epoch [26/64], Step [500/600], Loss: 0.0010 Epoch [26/64], Step [600/600], Loss: 0.0005 Epoch [27/64], Step [100/600], Loss: 0.0009 Epoch [27/64], Step [200/600], Loss: 0.0051 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0091 Epoch [27/64], Step [500/600], Loss: 0.0009 Epoch [27/64], Step [600/600], Loss: 0.0056 Epoch [28/64], Step [100/600], Loss: 0.0004 Epoch [28/64], Step [200/600], Loss: 0.0050 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0012 Epoch [28/64], Step [500/600], Loss: 0.0011 Epoch [28/64], Step [600/600], Loss: 0.0006 Epoch [29/64], Step [100/600], Loss: 0.0000 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0031 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0007 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0000 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0003 Epoch [30/64], Step [400/600], Loss: 0.0001 Epoch [30/64], Step [500/600], Loss: 0.0002 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0004 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0002 Epoch [31/64], Step [600/600], Loss: 0.0000 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0003 Epoch [32/64], Step [300/600], Loss: 0.0000 Epoch [32/64], Step [400/600], Loss: 0.0002 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0001 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0002 Epoch [33/64], Step [500/600], Loss: 0.0002 Epoch [33/64], Step [600/600], Loss: 0.0000 Epoch [34/64], Step [100/600], Loss: 0.0005 Epoch [34/64], Step [200/600], Loss: 0.0002 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0002 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0003 Epoch [35/64], Step [300/600], Loss: 0.0003 Epoch [35/64], Step [400/600], Loss: 0.0002 Epoch [35/64], Step [500/600], Loss: 0.0059 Epoch [35/64], Step [600/600], Loss: 0.0032 Epoch [36/64], Step [100/600], Loss: 0.0007 Epoch [36/64], Step [200/600], Loss: 0.0003 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0008 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0002 Epoch [37/64], Step [100/600], Loss: 0.0002 Epoch [37/64], Step [200/600], Loss: 0.0034 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0004 Epoch [38/64], Step [200/600], Loss: 0.0006 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0004 Epoch [38/64], Step [600/600], Loss: 0.0010 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0002 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0002 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0005 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0003 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0002 Epoch [42/64], Step [500/600], Loss: 0.0002 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0002 Epoch [44/64], Step [300/600], Loss: 0.0001 Epoch [44/64], Step [400/600], Loss: 0.0009 Epoch [44/64], Step [500/600], Loss: 0.0009 Epoch [44/64], Step [600/600], Loss: 0.0072 Epoch [45/64], Step [100/600], Loss: 0.0014 Epoch [45/64], Step [200/600], Loss: 0.0002 Epoch [45/64], Step [300/600], Loss: 0.0031 Epoch [45/64], Step [400/600], Loss: 0.0008 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0005 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0002 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0015 Epoch [47/64], Step [100/600], Loss: 0.0003 Epoch [47/64], Step [200/600], Loss: 0.0002 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0004 Epoch [47/64], Step [600/600], Loss: 0.0004 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0002 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0003 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0001 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0003 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0004 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0001 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0001 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0185 Epoch [55/64], Step [100/600], Loss: 0.0726 Epoch [55/64], Step [200/600], Loss: 0.0055 Epoch [55/64], Step [300/600], Loss: 0.0010 Epoch [55/64], Step [400/600], Loss: 0.0003 Epoch [55/64], Step [500/600], Loss: 0.0033 Epoch [55/64], Step [600/600], Loss: 0.0003 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0001 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0036 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0004 Epoch [57/64], Step [100/600], Loss: 0.0006 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0001 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0003 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0003 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0005 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0001 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 393.856 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins4888523987363173920.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS