Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98024 queued and waiting for resources srun: job 98024 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2485 Epoch [1/64], Step [200/600], Loss: 0.0781 Epoch [1/64], Step [300/600], Loss: 0.1472 Epoch [1/64], Step [400/600], Loss: 0.0999 Epoch [1/64], Step [500/600], Loss: 0.1557 Epoch [1/64], Step [600/600], Loss: 0.0947 Epoch [2/64], Step [100/600], Loss: 0.0578 Epoch [2/64], Step [200/600], Loss: 0.0455 Epoch [2/64], Step [300/600], Loss: 0.0737 Epoch [2/64], Step [400/600], Loss: 0.1022 Epoch [2/64], Step [500/600], Loss: 0.0333 Epoch [2/64], Step [600/600], Loss: 0.0749 Epoch [3/64], Step [100/600], Loss: 0.0475 Epoch [3/64], Step [200/600], Loss: 0.0379 Epoch [3/64], Step [300/600], Loss: 0.1132 Epoch [3/64], Step [400/600], Loss: 0.0546 Epoch [3/64], Step [500/600], Loss: 0.0287 Epoch [3/64], Step [600/600], Loss: 0.1074 Epoch [4/64], Step [100/600], Loss: 0.0275 Epoch [4/64], Step [200/600], Loss: 0.0076 Epoch [4/64], Step [300/600], Loss: 0.0554 Epoch [4/64], Step [400/600], Loss: 0.0310 Epoch [4/64], Step [500/600], Loss: 0.0152 Epoch [4/64], Step [600/600], Loss: 0.0247 Epoch [5/64], Step [100/600], Loss: 0.0114 Epoch [5/64], Step [200/600], Loss: 0.0792 Epoch [5/64], Step [300/600], Loss: 0.0036 Epoch [5/64], Step [400/600], Loss: 0.0160 Epoch [5/64], Step [500/600], Loss: 0.0108 Epoch [5/64], Step [600/600], Loss: 0.0313 Epoch [6/64], Step [100/600], Loss: 0.0350 Epoch [6/64], Step [200/600], Loss: 0.0022 Epoch [6/64], Step [300/600], Loss: 0.0314 Epoch [6/64], Step [400/600], Loss: 0.0444 Epoch [6/64], Step [500/600], Loss: 0.0128 Epoch [6/64], Step [600/600], Loss: 0.0117 Epoch [7/64], Step [100/600], Loss: 0.0136 Epoch [7/64], Step [200/600], Loss: 0.0125 Epoch [7/64], Step [300/600], Loss: 0.0141 Epoch [7/64], Step [400/600], Loss: 0.0283 Epoch [7/64], Step [500/600], Loss: 0.0087 Epoch [7/64], Step [600/600], Loss: 0.0126 Epoch [8/64], Step [100/600], Loss: 0.0262 Epoch [8/64], Step [200/600], Loss: 0.0097 Epoch [8/64], Step [300/600], Loss: 0.0109 Epoch [8/64], Step [400/600], Loss: 0.0304 Epoch [8/64], Step [500/600], Loss: 0.0247 Epoch [8/64], Step [600/600], Loss: 0.0089 Epoch [9/64], Step [100/600], Loss: 0.0033 Epoch [9/64], Step [200/600], Loss: 0.0076 Epoch [9/64], Step [300/600], Loss: 0.0008 Epoch [9/64], Step [400/600], Loss: 0.0058 Epoch [9/64], Step [500/600], Loss: 0.0078 Epoch [9/64], Step [600/600], Loss: 0.0081 Epoch [10/64], Step [100/600], Loss: 0.0061 Epoch [10/64], Step [200/600], Loss: 0.0008 Epoch [10/64], Step [300/600], Loss: 0.0048 Epoch [10/64], Step [400/600], Loss: 0.0085 Epoch [10/64], Step [500/600], Loss: 0.0143 Epoch [10/64], Step [600/600], Loss: 0.0165 Epoch [11/64], Step [100/600], Loss: 0.0081 Epoch [11/64], Step [200/600], Loss: 0.0222 Epoch [11/64], Step [300/600], Loss: 0.0047 Epoch [11/64], Step [400/600], Loss: 0.0131 Epoch [11/64], Step [500/600], Loss: 0.0015 Epoch [11/64], Step [600/600], Loss: 0.0230 Epoch [12/64], Step [100/600], Loss: 0.0179 Epoch [12/64], Step [200/600], Loss: 0.0065 Epoch [12/64], Step [300/600], Loss: 0.0019 Epoch [12/64], Step [400/600], Loss: 0.0349 Epoch [12/64], Step [500/600], Loss: 0.0093 Epoch [12/64], Step [600/600], Loss: 0.0016 Epoch [13/64], Step [100/600], Loss: 0.0012 Epoch [13/64], Step [200/600], Loss: 0.0044 Epoch [13/64], Step [300/600], Loss: 0.0009 Epoch [13/64], Step [400/600], Loss: 0.0022 Epoch [13/64], Step [500/600], Loss: 0.0008 Epoch [13/64], Step [600/600], Loss: 0.0010 Epoch [14/64], Step [100/600], Loss: 0.0110 Epoch [14/64], Step [200/600], Loss: 0.0030 Epoch [14/64], Step [300/600], Loss: 0.0030 Epoch [14/64], Step [400/600], Loss: 0.0045 Epoch [14/64], Step [500/600], Loss: 0.0030 Epoch [14/64], Step [600/600], Loss: 0.0064 Epoch [15/64], Step [100/600], Loss: 0.0109 Epoch [15/64], Step [200/600], Loss: 0.0182 Epoch [15/64], Step [300/600], Loss: 0.0033 Epoch [15/64], Step [400/600], Loss: 0.0036 Epoch [15/64], Step [500/600], Loss: 0.0004 Epoch [15/64], Step [600/600], Loss: 0.0093 Epoch [16/64], Step [100/600], Loss: 0.0011 Epoch [16/64], Step [200/600], Loss: 0.0004 Epoch [16/64], Step [300/600], Loss: 0.0011 Epoch [16/64], Step [400/600], Loss: 0.0008 Epoch [16/64], Step [500/600], Loss: 0.0094 Epoch [16/64], Step [600/600], Loss: 0.0116 Epoch [17/64], Step [100/600], Loss: 0.0022 Epoch [17/64], Step [200/600], Loss: 0.0012 Epoch [17/64], Step [300/600], Loss: 0.0007 Epoch [17/64], Step [400/600], Loss: 0.0181 Epoch [17/64], Step [500/600], Loss: 0.0091 Epoch [17/64], Step [600/600], Loss: 0.0002 Epoch [18/64], Step [100/600], Loss: 0.0076 Epoch [18/64], Step [200/600], Loss: 0.0029 Epoch [18/64], Step [300/600], Loss: 0.0022 Epoch [18/64], Step [400/600], Loss: 0.0017 Epoch [18/64], Step [500/600], Loss: 0.0010 Epoch [18/64], Step [600/600], Loss: 0.0003 Epoch [19/64], Step [100/600], Loss: 0.0023 Epoch [19/64], Step [200/600], Loss: 0.0022 Epoch [19/64], Step [300/600], Loss: 0.0006 Epoch [19/64], Step [400/600], Loss: 0.0015 Epoch [19/64], Step [500/600], Loss: 0.0007 Epoch [19/64], Step [600/600], Loss: 0.0034 Epoch [20/64], Step [100/600], Loss: 0.0004 Epoch [20/64], Step [200/600], Loss: 0.0008 Epoch [20/64], Step [300/600], Loss: 0.0027 Epoch [20/64], Step [400/600], Loss: 0.0036 Epoch [20/64], Step [500/600], Loss: 0.0048 Epoch [20/64], Step [600/600], Loss: 0.0033 Epoch [21/64], Step [100/600], Loss: 0.0015 Epoch [21/64], Step [200/600], Loss: 0.0003 Epoch [21/64], Step [300/600], Loss: 0.0003 Epoch [21/64], Step [400/600], Loss: 0.0013 Epoch [21/64], Step [500/600], Loss: 0.0007 Epoch [21/64], Step [600/600], Loss: 0.0313 Epoch [22/64], Step [100/600], Loss: 0.0006 Epoch [22/64], Step [200/600], Loss: 0.0001 Epoch [22/64], Step [300/600], Loss: 0.0011 Epoch [22/64], Step [400/600], Loss: 0.0038 Epoch [22/64], Step [500/600], Loss: 0.0002 Epoch [22/64], Step [600/600], Loss: 0.0003 Epoch [23/64], Step [100/600], Loss: 0.0065 Epoch [23/64], Step [200/600], Loss: 0.0062 Epoch [23/64], Step [300/600], Loss: 0.0005 Epoch [23/64], Step [400/600], Loss: 0.0008 Epoch [23/64], Step [500/600], Loss: 0.0053 Epoch [23/64], Step [600/600], Loss: 0.0001 Epoch [24/64], Step [100/600], Loss: 0.0026 Epoch [24/64], Step [200/600], Loss: 0.0007 Epoch [24/64], Step [300/600], Loss: 0.0177 Epoch [24/64], Step [400/600], Loss: 0.0002 Epoch [24/64], Step [500/600], Loss: 0.0034 Epoch [24/64], Step [600/600], Loss: 0.0006 Epoch [25/64], Step [100/600], Loss: 0.0000 Epoch [25/64], Step [200/600], Loss: 0.0041 Epoch [25/64], Step [300/600], Loss: 0.0054 Epoch [25/64], Step [400/600], Loss: 0.0030 Epoch [25/64], Step [500/600], Loss: 0.0071 Epoch [25/64], Step [600/600], Loss: 0.0009 Epoch [26/64], Step [100/600], Loss: 0.0001 Epoch [26/64], Step [200/600], Loss: 0.0001 Epoch [26/64], Step [300/600], Loss: 0.0151 Epoch [26/64], Step [400/600], Loss: 0.0005 Epoch [26/64], Step [500/600], Loss: 0.0002 Epoch [26/64], Step [600/600], Loss: 0.0009 Epoch [27/64], Step [100/600], Loss: 0.0003 Epoch [27/64], Step [200/600], Loss: 0.0003 Epoch [27/64], Step [300/600], Loss: 0.0004 Epoch [27/64], Step [400/600], Loss: 0.0001 Epoch [27/64], Step [500/600], Loss: 0.0347 Epoch [27/64], Step [600/600], Loss: 0.0002 Epoch [28/64], Step [100/600], Loss: 0.0000 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0005 Epoch [28/64], Step [400/600], Loss: 0.0203 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0000 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0002 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0000 Epoch [30/64], Step [200/600], Loss: 0.0000 Epoch [30/64], Step [300/600], Loss: 0.0003 Epoch [30/64], Step [400/600], Loss: 0.0001 Epoch [30/64], Step [500/600], Loss: 0.0002 Epoch [30/64], Step [600/600], Loss: 0.0000 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0006 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0074 Epoch [33/64], Step [100/600], Loss: 0.0187 Epoch [33/64], Step [200/600], Loss: 0.0125 Epoch [33/64], Step [300/600], Loss: 0.0066 Epoch [33/64], Step [400/600], Loss: 0.0007 Epoch [33/64], Step [500/600], Loss: 0.0005 Epoch [33/64], Step [600/600], Loss: 0.0015 Epoch [34/64], Step [100/600], Loss: 0.0010 Epoch [34/64], Step [200/600], Loss: 0.0004 Epoch [34/64], Step [300/600], Loss: 0.0000 Epoch [34/64], Step [400/600], Loss: 0.0000 Epoch [34/64], Step [500/600], Loss: 0.0003 Epoch [34/64], Step [600/600], Loss: 0.0056 Epoch [35/64], Step [100/600], Loss: 0.0000 Epoch [35/64], Step [200/600], Loss: 0.0006 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0003 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0003 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0002 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0002 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0002 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0000 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0000 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0000 Epoch [42/64], Step [100/600], Loss: 0.0000 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0845 Epoch [42/64], Step [400/600], Loss: 0.0360 Epoch [42/64], Step [500/600], Loss: 0.0108 Epoch [42/64], Step [600/600], Loss: 0.0078 Epoch [43/64], Step [100/600], Loss: 0.0003 Epoch [43/64], Step [200/600], Loss: 0.0134 Epoch [43/64], Step [300/600], Loss: 0.0056 Epoch [43/64], Step [400/600], Loss: 0.0007 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0002 Epoch [44/64], Step [300/600], Loss: 0.0018 Epoch [44/64], Step [400/600], Loss: 0.0002 Epoch [44/64], Step [500/600], Loss: 0.0001 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0003 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0002 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0001 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0001 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0001 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0002 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0003 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0003 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0817 Epoch [54/64], Step [100/600], Loss: 0.0003 Epoch [54/64], Step [200/600], Loss: 0.0017 Epoch [54/64], Step [300/600], Loss: 0.0034 Epoch [54/64], Step [400/600], Loss: 0.0004 Epoch [54/64], Step [500/600], Loss: 0.0010 Epoch [54/64], Step [600/600], Loss: 0.0006 Epoch [55/64], Step [100/600], Loss: 0.0026 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0007 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0001 Epoch [56/64], Step [300/600], Loss: 0.0003 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0001 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0001 Epoch [60/64], Step [400/600], Loss: 0.0001 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0002 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 370.744 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins9864074567788099006.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS