Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98605 queued and waiting for resources srun: job 98605 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2761 Epoch [1/64], Step [200/600], Loss: 0.1135 Epoch [1/64], Step [300/600], Loss: 0.0752 Epoch [1/64], Step [400/600], Loss: 0.0658 Epoch [1/64], Step [500/600], Loss: 0.0945 Epoch [1/64], Step [600/600], Loss: 0.0354 Epoch [2/64], Step [100/600], Loss: 0.1101 Epoch [2/64], Step [200/600], Loss: 0.0260 Epoch [2/64], Step [300/600], Loss: 0.0535 Epoch [2/64], Step [400/600], Loss: 0.0383 Epoch [2/64], Step [500/600], Loss: 0.0388 Epoch [2/64], Step [600/600], Loss: 0.0709 Epoch [3/64], Step [100/600], Loss: 0.0566 Epoch [3/64], Step [200/600], Loss: 0.0295 Epoch [3/64], Step [300/600], Loss: 0.0580 Epoch [3/64], Step [400/600], Loss: 0.0149 Epoch [3/64], Step [500/600], Loss: 0.0149 Epoch [3/64], Step [600/600], Loss: 0.0285 Epoch [4/64], Step [100/600], Loss: 0.0278 Epoch [4/64], Step [200/600], Loss: 0.0949 Epoch [4/64], Step [300/600], Loss: 0.0171 Epoch [4/64], Step [400/600], Loss: 0.0395 Epoch [4/64], Step [500/600], Loss: 0.0064 Epoch [4/64], Step [600/600], Loss: 0.0829 Epoch [5/64], Step [100/600], Loss: 0.0133 Epoch [5/64], Step [200/600], Loss: 0.0276 Epoch [5/64], Step [300/600], Loss: 0.0142 Epoch [5/64], Step [400/600], Loss: 0.0259 Epoch [5/64], Step [500/600], Loss: 0.0025 Epoch [5/64], Step [600/600], Loss: 0.0151 Epoch [6/64], Step [100/600], Loss: 0.0192 Epoch [6/64], Step [200/600], Loss: 0.0338 Epoch [6/64], Step [300/600], Loss: 0.0557 Epoch [6/64], Step [400/600], Loss: 0.0206 Epoch [6/64], Step [500/600], Loss: 0.0364 Epoch [6/64], Step [600/600], Loss: 0.0070 Epoch [7/64], Step [100/600], Loss: 0.0210 Epoch [7/64], Step [200/600], Loss: 0.0209 Epoch [7/64], Step [300/600], Loss: 0.0299 Epoch [7/64], Step [400/600], Loss: 0.0182 Epoch [7/64], Step [500/600], Loss: 0.0115 Epoch [7/64], Step [600/600], Loss: 0.0029 Epoch [8/64], Step [100/600], Loss: 0.0241 Epoch [8/64], Step [200/600], Loss: 0.0575 Epoch [8/64], Step [300/600], Loss: 0.0239 Epoch [8/64], Step [400/600], Loss: 0.0037 Epoch [8/64], Step [500/600], Loss: 0.0129 Epoch [8/64], Step [600/600], Loss: 0.0293 Epoch [9/64], Step [100/600], Loss: 0.0042 Epoch [9/64], Step [200/600], Loss: 0.0112 Epoch [9/64], Step [300/600], Loss: 0.0056 Epoch [9/64], Step [400/600], Loss: 0.0057 Epoch [9/64], Step [500/600], Loss: 0.0055 Epoch [9/64], Step [600/600], Loss: 0.0222 Epoch [10/64], Step [100/600], Loss: 0.0044 Epoch [10/64], Step [200/600], Loss: 0.0090 Epoch [10/64], Step [300/600], Loss: 0.0132 Epoch [10/64], Step [400/600], Loss: 0.0033 Epoch [10/64], Step [500/600], Loss: 0.0041 Epoch [10/64], Step [600/600], Loss: 0.0043 Epoch [11/64], Step [100/600], Loss: 0.0038 Epoch [11/64], Step [200/600], Loss: 0.0008 Epoch [11/64], Step [300/600], Loss: 0.0055 Epoch [11/64], Step [400/600], Loss: 0.0275 Epoch [11/64], Step [500/600], Loss: 0.0022 Epoch [11/64], Step [600/600], Loss: 0.0229 Epoch [12/64], Step [100/600], Loss: 0.0026 Epoch [12/64], Step [200/600], Loss: 0.0121 Epoch [12/64], Step [300/600], Loss: 0.0003 Epoch [12/64], Step [400/600], Loss: 0.0018 Epoch [12/64], Step [500/600], Loss: 0.0018 Epoch [12/64], Step [600/600], Loss: 0.0135 Epoch [13/64], Step [100/600], Loss: 0.0045 Epoch [13/64], Step [200/600], Loss: 0.0009 Epoch [13/64], Step [300/600], Loss: 0.0040 Epoch [13/64], Step [400/600], Loss: 0.0025 Epoch [13/64], Step [500/600], Loss: 0.0379 Epoch [13/64], Step [600/600], Loss: 0.0027 Epoch [14/64], Step [100/600], Loss: 0.0016 Epoch [14/64], Step [200/600], Loss: 0.0016 Epoch [14/64], Step [300/600], Loss: 0.0006 Epoch [14/64], Step [400/600], Loss: 0.0296 Epoch [14/64], Step [500/600], Loss: 0.0097 Epoch [14/64], Step [600/600], Loss: 0.0029 Epoch [15/64], Step [100/600], Loss: 0.0025 Epoch [15/64], Step [200/600], Loss: 0.0017 Epoch [15/64], Step [300/600], Loss: 0.0014 Epoch [15/64], Step [400/600], Loss: 0.0070 Epoch [15/64], Step [500/600], Loss: 0.0007 Epoch [15/64], Step [600/600], Loss: 0.0026 Epoch [16/64], Step [100/600], Loss: 0.0005 Epoch [16/64], Step [200/600], Loss: 0.0031 Epoch [16/64], Step [300/600], Loss: 0.0014 Epoch [16/64], Step [400/600], Loss: 0.0015 Epoch [16/64], Step [500/600], Loss: 0.0147 Epoch [16/64], Step [600/600], Loss: 0.0007 Epoch [17/64], Step [100/600], Loss: 0.0028 Epoch [17/64], Step [200/600], Loss: 0.0007 Epoch [17/64], Step [300/600], Loss: 0.0006 Epoch [17/64], Step [400/600], Loss: 0.0007 Epoch [17/64], Step [500/600], Loss: 0.0053 Epoch [17/64], Step [600/600], Loss: 0.0062 Epoch [18/64], Step [100/600], Loss: 0.0016 Epoch [18/64], Step [200/600], Loss: 0.0016 Epoch [18/64], Step [300/600], Loss: 0.0012 Epoch [18/64], Step [400/600], Loss: 0.0149 Epoch [18/64], Step [500/600], Loss: 0.0027 Epoch [18/64], Step [600/600], Loss: 0.0008 Epoch [19/64], Step [100/600], Loss: 0.0001 Epoch [19/64], Step [200/600], Loss: 0.0005 Epoch [19/64], Step [300/600], Loss: 0.0071 Epoch [19/64], Step [400/600], Loss: 0.0001 Epoch [19/64], Step [500/600], Loss: 0.0077 Epoch [19/64], Step [600/600], Loss: 0.0086 Epoch [20/64], Step [100/600], Loss: 0.0028 Epoch [20/64], Step [200/600], Loss: 0.0012 Epoch [20/64], Step [300/600], Loss: 0.0004 Epoch [20/64], Step [400/600], Loss: 0.0006 Epoch [20/64], Step [500/600], Loss: 0.0029 Epoch [20/64], Step [600/600], Loss: 0.0067 Epoch [21/64], Step [100/600], Loss: 0.0006 Epoch [21/64], Step [200/600], Loss: 0.0004 Epoch [21/64], Step [300/600], Loss: 0.0007 Epoch [21/64], Step [400/600], Loss: 0.0006 Epoch [21/64], Step [500/600], Loss: 0.0045 Epoch [21/64], Step [600/600], Loss: 0.0012 Epoch [22/64], Step [100/600], Loss: 0.0098 Epoch [22/64], Step [200/600], Loss: 0.0001 Epoch [22/64], Step [300/600], Loss: 0.0037 Epoch [22/64], Step [400/600], Loss: 0.0012 Epoch [22/64], Step [500/600], Loss: 0.0007 Epoch [22/64], Step [600/600], Loss: 0.0003 Epoch [23/64], Step [100/600], Loss: 0.0014 Epoch [23/64], Step [200/600], Loss: 0.0001 Epoch [23/64], Step [300/600], Loss: 0.0001 Epoch [23/64], Step [400/600], Loss: 0.0036 Epoch [23/64], Step [500/600], Loss: 0.0017 Epoch [23/64], Step [600/600], Loss: 0.0002 Epoch [24/64], Step [100/600], Loss: 0.0004 Epoch [24/64], Step [200/600], Loss: 0.0048 Epoch [24/64], Step [300/600], Loss: 0.0030 Epoch [24/64], Step [400/600], Loss: 0.0020 Epoch [24/64], Step [500/600], Loss: 0.0010 Epoch [24/64], Step [600/600], Loss: 0.0026 Epoch [25/64], Step [100/600], Loss: 0.0028 Epoch [25/64], Step [200/600], Loss: 0.0019 Epoch [25/64], Step [300/600], Loss: 0.0010 Epoch [25/64], Step [400/600], Loss: 0.0003 Epoch [25/64], Step [500/600], Loss: 0.0043 Epoch [25/64], Step [600/600], Loss: 0.0006 Epoch [26/64], Step [100/600], Loss: 0.0003 Epoch [26/64], Step [200/600], Loss: 0.0001 Epoch [26/64], Step [300/600], Loss: 0.0000 Epoch [26/64], Step [400/600], Loss: 0.0018 Epoch [26/64], Step [500/600], Loss: 0.0006 Epoch [26/64], Step [600/600], Loss: 0.0037 Epoch [27/64], Step [100/600], Loss: 0.0003 Epoch [27/64], Step [200/600], Loss: 0.0003 Epoch [27/64], Step [300/600], Loss: 0.0007 Epoch [27/64], Step [400/600], Loss: 0.0016 Epoch [27/64], Step [500/600], Loss: 0.0037 Epoch [27/64], Step [600/600], Loss: 0.0010 Epoch [28/64], Step [100/600], Loss: 0.0001 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0002 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0003 Epoch [28/64], Step [600/600], Loss: 0.0000 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0004 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0004 Epoch [29/64], Step [500/600], Loss: 0.0239 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0084 Epoch [30/64], Step [200/600], Loss: 0.0002 Epoch [30/64], Step [300/600], Loss: 0.0000 Epoch [30/64], Step [400/600], Loss: 0.0002 Epoch [30/64], Step [500/600], Loss: 0.0003 Epoch [30/64], Step [600/600], Loss: 0.0009 Epoch [31/64], Step [100/600], Loss: 0.0010 Epoch [31/64], Step [200/600], Loss: 0.0003 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0046 Epoch [31/64], Step [600/600], Loss: 0.0007 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0000 Epoch [32/64], Step [300/600], Loss: 0.0002 Epoch [32/64], Step [400/600], Loss: 0.0004 Epoch [32/64], Step [500/600], Loss: 0.0003 Epoch [32/64], Step [600/600], Loss: 0.0003 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0003 Epoch [33/64], Step [300/600], Loss: 0.0000 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0000 Epoch [34/64], Step [100/600], Loss: 0.0002 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0002 Epoch [34/64], Step [500/600], Loss: 0.0004 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0001 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0000 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0000 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0000 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0000 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0002 Epoch [40/64], Step [100/600], Loss: 0.0086 Epoch [40/64], Step [200/600], Loss: 0.0041 Epoch [40/64], Step [300/600], Loss: 0.0016 Epoch [40/64], Step [400/600], Loss: 0.0036 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0011 Epoch [41/64], Step [100/600], Loss: 0.0026 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0015 Epoch [41/64], Step [500/600], Loss: 0.0002 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0002 Epoch [42/64], Step [500/600], Loss: 0.0006 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0004 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0002 Epoch [44/64], Step [300/600], Loss: 0.0003 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0003 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0002 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0417 Epoch [51/64], Step [500/600], Loss: 0.0005 Epoch [51/64], Step [600/600], Loss: 0.0085 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0004 Epoch [52/64], Step [300/600], Loss: 0.0003 Epoch [52/64], Step [400/600], Loss: 0.0004 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0002 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0002 Epoch [53/64], Step [400/600], Loss: 0.0002 Epoch [53/64], Step [500/600], Loss: 0.0008 Epoch [53/64], Step [600/600], Loss: 0.0030 Epoch [54/64], Step [100/600], Loss: 0.0060 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0002 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0001 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 371.899 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins10541114391838761694.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS