Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84088 queued and waiting for resources srun: job 84088 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.1556 Epoch [1/64], Step [200/600], Loss: 0.1192 Epoch [1/64], Step [300/600], Loss: 0.1176 Epoch [1/64], Step [400/600], Loss: 0.0658 Epoch [1/64], Step [500/600], Loss: 0.1263 Epoch [1/64], Step [600/600], Loss: 0.0408 Epoch [2/64], Step [100/600], Loss: 0.0581 Epoch [2/64], Step [200/600], Loss: 0.0168 Epoch [2/64], Step [300/600], Loss: 0.0245 Epoch [2/64], Step [400/600], Loss: 0.0264 Epoch [2/64], Step [500/600], Loss: 0.0920 Epoch [2/64], Step [600/600], Loss: 0.0329 Epoch [3/64], Step [100/600], Loss: 0.0594 Epoch [3/64], Step [200/600], Loss: 0.0875 Epoch [3/64], Step [300/600], Loss: 0.0180 Epoch [3/64], Step [400/600], Loss: 0.1636 Epoch [3/64], Step [500/600], Loss: 0.0117 Epoch [3/64], Step [600/600], Loss: 0.0762 Epoch [4/64], Step [100/600], Loss: 0.0069 Epoch [4/64], Step [200/600], Loss: 0.0350 Epoch [4/64], Step [300/600], Loss: 0.0138 Epoch [4/64], Step [400/600], Loss: 0.0147 Epoch [4/64], Step [500/600], Loss: 0.0176 Epoch [4/64], Step [600/600], Loss: 0.0978 Epoch [5/64], Step [100/600], Loss: 0.0105 Epoch [5/64], Step [200/600], Loss: 0.0199 Epoch [5/64], Step [300/600], Loss: 0.0127 Epoch [5/64], Step [400/600], Loss: 0.0549 Epoch [5/64], Step [500/600], Loss: 0.0282 Epoch [5/64], Step [600/600], Loss: 0.0667 Epoch [6/64], Step [100/600], Loss: 0.0193 Epoch [6/64], Step [200/600], Loss: 0.0139 Epoch [6/64], Step [300/600], Loss: 0.0084 Epoch [6/64], Step [400/600], Loss: 0.1442 Epoch [6/64], Step [500/600], Loss: 0.0256 Epoch [6/64], Step [600/600], Loss: 0.0119 Epoch [7/64], Step [100/600], Loss: 0.0235 Epoch [7/64], Step [200/600], Loss: 0.0074 Epoch [7/64], Step [300/600], Loss: 0.0155 Epoch [7/64], Step [400/600], Loss: 0.0171 Epoch [7/64], Step [500/600], Loss: 0.0019 Epoch [7/64], Step [600/600], Loss: 0.0310 Epoch [8/64], Step [100/600], Loss: 0.0116 Epoch [8/64], Step [200/600], Loss: 0.0079 Epoch [8/64], Step [300/600], Loss: 0.0056 Epoch [8/64], Step [400/600], Loss: 0.0508 Epoch [8/64], Step [500/600], Loss: 0.0009 Epoch [8/64], Step [600/600], Loss: 0.0206 Epoch [9/64], Step [100/600], Loss: 0.0077 Epoch [9/64], Step [200/600], Loss: 0.0021 Epoch [9/64], Step [300/600], Loss: 0.0044 Epoch [9/64], Step [400/600], Loss: 0.0088 Epoch [9/64], Step [500/600], Loss: 0.0046 Epoch [9/64], Step [600/600], Loss: 0.0091 Epoch [10/64], Step [100/600], Loss: 0.0614 Epoch [10/64], Step [200/600], Loss: 0.0074 Epoch [10/64], Step [300/600], Loss: 0.0038 Epoch [10/64], Step [400/600], Loss: 0.0014 Epoch [10/64], Step [500/600], Loss: 0.0142 Epoch [10/64], Step [600/600], Loss: 0.0030 Epoch [11/64], Step [100/600], Loss: 0.0018 Epoch [11/64], Step [200/600], Loss: 0.0035 Epoch [11/64], Step [300/600], Loss: 0.0186 Epoch [11/64], Step [400/600], Loss: 0.0208 Epoch [11/64], Step [500/600], Loss: 0.0182 Epoch [11/64], Step [600/600], Loss: 0.0047 Epoch [12/64], Step [100/600], Loss: 0.0006 Epoch [12/64], Step [200/600], Loss: 0.0009 Epoch [12/64], Step [300/600], Loss: 0.0212 Epoch [12/64], Step [400/600], Loss: 0.0099 Epoch [12/64], Step [500/600], Loss: 0.0027 Epoch [12/64], Step [600/600], Loss: 0.0137 Epoch [13/64], Step [100/600], Loss: 0.0003 Epoch [13/64], Step [200/600], Loss: 0.0320 Epoch [13/64], Step [300/600], Loss: 0.0010 Epoch [13/64], Step [400/600], Loss: 0.0020 Epoch [13/64], Step [500/600], Loss: 0.0029 Epoch [13/64], Step [600/600], Loss: 0.0127 Epoch [14/64], Step [100/600], Loss: 0.0123 Epoch [14/64], Step [200/600], Loss: 0.0095 Epoch [14/64], Step [300/600], Loss: 0.0003 Epoch [14/64], Step [400/600], Loss: 0.0008 Epoch [14/64], Step [500/600], Loss: 0.0047 Epoch [14/64], Step [600/600], Loss: 0.0241 Epoch [15/64], Step [100/600], Loss: 0.0044 Epoch [15/64], Step [200/600], Loss: 0.0020 Epoch [15/64], Step [300/600], Loss: 0.0020 Epoch [15/64], Step [400/600], Loss: 0.0016 Epoch [15/64], Step [500/600], Loss: 0.0142 Epoch [15/64], Step [600/600], Loss: 0.0059 Epoch [16/64], Step [100/600], Loss: 0.0017 Epoch [16/64], Step [200/600], Loss: 0.0039 Epoch [16/64], Step [300/600], Loss: 0.0058 Epoch [16/64], Step [400/600], Loss: 0.0123 Epoch [16/64], Step [500/600], Loss: 0.0176 Epoch [16/64], Step [600/600], Loss: 0.0035 Epoch [17/64], Step [100/600], Loss: 0.0005 Epoch [17/64], Step [200/600], Loss: 0.0016 Epoch [17/64], Step [300/600], Loss: 0.0006 Epoch [17/64], Step [400/600], Loss: 0.0016 Epoch [17/64], Step [500/600], Loss: 0.0016 Epoch [17/64], Step [600/600], Loss: 0.0009 Epoch [18/64], Step [100/600], Loss: 0.0022 Epoch [18/64], Step [200/600], Loss: 0.0007 Epoch [18/64], Step [300/600], Loss: 0.0008 Epoch [18/64], Step [400/600], Loss: 0.0008 Epoch [18/64], Step [500/600], Loss: 0.0106 Epoch [18/64], Step [600/600], Loss: 0.0303 Epoch [19/64], Step [100/600], Loss: 0.0008 Epoch [19/64], Step [200/600], Loss: 0.0018 Epoch [19/64], Step [300/600], Loss: 0.0044 Epoch [19/64], Step [400/600], Loss: 0.0016 Epoch [19/64], Step [500/600], Loss: 0.0018 Epoch [19/64], Step [600/600], Loss: 0.0004 Epoch [20/64], Step [100/600], Loss: 0.0004 Epoch [20/64], Step [200/600], Loss: 0.0003 Epoch [20/64], Step [300/600], Loss: 0.0001 Epoch [20/64], Step [400/600], Loss: 0.0001 Epoch [20/64], Step [500/600], Loss: 0.0006 Epoch [20/64], Step [600/600], Loss: 0.0007 Epoch [21/64], Step [100/600], Loss: 0.0006 Epoch [21/64], Step [200/600], Loss: 0.0004 Epoch [21/64], Step [300/600], Loss: 0.0013 Epoch [21/64], Step [400/600], Loss: 0.0015 Epoch [21/64], Step [500/600], Loss: 0.0002 Epoch [21/64], Step [600/600], Loss: 0.0201 Epoch [22/64], Step [100/600], Loss: 0.0006 Epoch [22/64], Step [200/600], Loss: 0.0005 Epoch [22/64], Step [300/600], Loss: 0.0005 Epoch [22/64], Step [400/600], Loss: 0.0028 Epoch [22/64], Step [500/600], Loss: 0.0092 Epoch [22/64], Step [600/600], Loss: 0.0020 Epoch [23/64], Step [100/600], Loss: 0.0069 Epoch [23/64], Step [200/600], Loss: 0.0041 Epoch [23/64], Step [300/600], Loss: 0.0001 Epoch [23/64], Step [400/600], Loss: 0.0002 Epoch [23/64], Step [500/600], Loss: 0.0012 Epoch [23/64], Step [600/600], Loss: 0.0030 Epoch [24/64], Step [100/600], Loss: 0.0169 Epoch [24/64], Step [200/600], Loss: 0.0312 Epoch [24/64], Step [300/600], Loss: 0.0054 Epoch [24/64], Step [400/600], Loss: 0.0035 Epoch [24/64], Step [500/600], Loss: 0.0004 Epoch [24/64], Step [600/600], Loss: 0.0009 Epoch [25/64], Step [100/600], Loss: 0.0018 Epoch [25/64], Step [200/600], Loss: 0.0002 Epoch [25/64], Step [300/600], Loss: 0.0001 Epoch [25/64], Step [400/600], Loss: 0.0002 Epoch [25/64], Step [500/600], Loss: 0.0001 Epoch [25/64], Step [600/600], Loss: 0.0001 Epoch [26/64], Step [100/600], Loss: 0.0000 Epoch [26/64], Step [200/600], Loss: 0.0006 Epoch [26/64], Step [300/600], Loss: 0.0001 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0008 Epoch [26/64], Step [600/600], Loss: 0.0009 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0002 Epoch [27/64], Step [300/600], Loss: 0.0000 Epoch [27/64], Step [400/600], Loss: 0.0002 Epoch [27/64], Step [500/600], Loss: 0.0003 Epoch [27/64], Step [600/600], Loss: 0.0001 Epoch [28/64], Step [100/600], Loss: 0.0001 Epoch [28/64], Step [200/600], Loss: 0.0003 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0002 Epoch [28/64], Step [600/600], Loss: 0.0000 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0004 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0000 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0002 Epoch [30/64], Step [600/600], Loss: 0.0284 Epoch [31/64], Step [100/600], Loss: 0.0030 Epoch [31/64], Step [200/600], Loss: 0.0051 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0093 Epoch [31/64], Step [500/600], Loss: 0.0125 Epoch [31/64], Step [600/600], Loss: 0.0010 Epoch [32/64], Step [100/600], Loss: 0.0005 Epoch [32/64], Step [200/600], Loss: 0.0014 Epoch [32/64], Step [300/600], Loss: 0.0004 Epoch [32/64], Step [400/600], Loss: 0.0003 Epoch [32/64], Step [500/600], Loss: 0.0002 Epoch [32/64], Step [600/600], Loss: 0.0002 Epoch [33/64], Step [100/600], Loss: 0.0045 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0005 Epoch [33/64], Step [500/600], Loss: 0.0002 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0003 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0000 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0003 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0005 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0003 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0002 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0002 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0000 Epoch [38/64], Step [600/600], Loss: 0.0006 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0146 Epoch [40/64], Step [100/600], Loss: 0.0437 Epoch [40/64], Step [200/600], Loss: 0.0321 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0008 Epoch [40/64], Step [500/600], Loss: 0.0108 Epoch [40/64], Step [600/600], Loss: 0.0088 Epoch [41/64], Step [100/600], Loss: 0.0003 Epoch [41/64], Step [200/600], Loss: 0.0002 Epoch [41/64], Step [300/600], Loss: 0.0003 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0011 Epoch [42/64], Step [100/600], Loss: 0.0022 Epoch [42/64], Step [200/600], Loss: 0.0003 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0006 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0001 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0003 Epoch [44/64], Step [200/600], Loss: 0.0020 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0009 Epoch [44/64], Step [500/600], Loss: 0.0001 Epoch [44/64], Step [600/600], Loss: 0.0003 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0002 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.1483 Epoch [51/64], Step [100/600], Loss: 0.0231 Epoch [51/64], Step [200/600], Loss: 0.0012 Epoch [51/64], Step [300/600], Loss: 0.0033 Epoch [51/64], Step [400/600], Loss: 0.0007 Epoch [51/64], Step [500/600], Loss: 0.0037 Epoch [51/64], Step [600/600], Loss: 0.0037 Epoch [52/64], Step [100/600], Loss: 0.0245 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0003 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0013 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0005 Epoch [53/64], Step [600/600], Loss: 0.0004 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0006 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0002 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0002 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0002 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0001 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0001 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0003 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0573 Epoch [64/64], Step [100/600], Loss: 0.0023 Epoch [64/64], Step [200/600], Loss: 0.0066 Epoch [64/64], Step [300/600], Loss: 0.0027 Epoch [64/64], Step [400/600], Loss: 0.0074 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0003 Pytorch test completed in 448.008 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins3093868967198751372.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS