Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 85357 queued and waiting for resources srun: job 85357 has been allocated resources Running benchmark on hydro04 Epoch [1/64], Step [100/600], Loss: 0.1996 Epoch [1/64], Step [200/600], Loss: 0.1285 Epoch [1/64], Step [300/600], Loss: 0.1341 Epoch [1/64], Step [400/600], Loss: 0.0268 Epoch [1/64], Step [500/600], Loss: 0.0700 Epoch [1/64], Step [600/600], Loss: 0.1150 Epoch [2/64], Step [100/600], Loss: 0.0450 Epoch [2/64], Step [200/600], Loss: 0.0692 Epoch [2/64], Step [300/600], Loss: 0.0615 Epoch [2/64], Step [400/600], Loss: 0.0153 Epoch [2/64], Step [500/600], Loss: 0.0229 Epoch [2/64], Step [600/600], Loss: 0.0570 Epoch [3/64], Step [100/600], Loss: 0.0242 Epoch [3/64], Step [200/600], Loss: 0.0273 Epoch [3/64], Step [300/600], Loss: 0.0571 Epoch [3/64], Step [400/600], Loss: 0.0396 Epoch [3/64], Step [500/600], Loss: 0.0083 Epoch [3/64], Step [600/600], Loss: 0.0138 Epoch [4/64], Step [100/600], Loss: 0.0307 Epoch [4/64], Step [200/600], Loss: 0.0081 Epoch [4/64], Step [300/600], Loss: 0.0164 Epoch [4/64], Step [400/600], Loss: 0.0314 Epoch [4/64], Step [500/600], Loss: 0.0087 Epoch [4/64], Step [600/600], Loss: 0.0344 Epoch [5/64], Step [100/600], Loss: 0.0458 Epoch [5/64], Step [200/600], Loss: 0.0257 Epoch [5/64], Step [300/600], Loss: 0.0159 Epoch [5/64], Step [400/600], Loss: 0.0241 Epoch [5/64], Step [500/600], Loss: 0.0378 Epoch [5/64], Step [600/600], Loss: 0.0133 Epoch [6/64], Step [100/600], Loss: 0.0009 Epoch [6/64], Step [200/600], Loss: 0.0279 Epoch [6/64], Step [300/600], Loss: 0.0092 Epoch [6/64], Step [400/600], Loss: 0.0518 Epoch [6/64], Step [500/600], Loss: 0.0080 Epoch [6/64], Step [600/600], Loss: 0.0351 Epoch [7/64], Step [100/600], Loss: 0.0140 Epoch [7/64], Step [200/600], Loss: 0.0145 Epoch [7/64], Step [300/600], Loss: 0.0287 Epoch [7/64], Step [400/600], Loss: 0.0102 Epoch [7/64], Step [500/600], Loss: 0.1203 Epoch [7/64], Step [600/600], Loss: 0.0043 Epoch [8/64], Step [100/600], Loss: 0.0163 Epoch [8/64], Step [200/600], Loss: 0.0248 Epoch [8/64], Step [300/600], Loss: 0.0282 Epoch [8/64], Step [400/600], Loss: 0.0504 Epoch [8/64], Step [500/600], Loss: 0.0040 Epoch [8/64], Step [600/600], Loss: 0.0114 Epoch [9/64], Step [100/600], Loss: 0.0104 Epoch [9/64], Step [200/600], Loss: 0.0133 Epoch [9/64], Step [300/600], Loss: 0.0367 Epoch [9/64], Step [400/600], Loss: 0.0041 Epoch [9/64], Step [500/600], Loss: 0.0093 Epoch [9/64], Step [600/600], Loss: 0.0181 Epoch [10/64], Step [100/600], Loss: 0.0261 Epoch [10/64], Step [200/600], Loss: 0.0445 Epoch [10/64], Step [300/600], Loss: 0.0053 Epoch [10/64], Step [400/600], Loss: 0.0081 Epoch [10/64], Step [500/600], Loss: 0.0149 Epoch [10/64], Step [600/600], Loss: 0.0379 Epoch [11/64], Step [100/600], Loss: 0.0011 Epoch [11/64], Step [200/600], Loss: 0.0042 Epoch [11/64], Step [300/600], Loss: 0.0027 Epoch [11/64], Step [400/600], Loss: 0.0282 Epoch [11/64], Step [500/600], Loss: 0.0263 Epoch [11/64], Step [600/600], Loss: 0.0033 Epoch [12/64], Step [100/600], Loss: 0.0046 Epoch [12/64], Step [200/600], Loss: 0.0082 Epoch [12/64], Step [300/600], Loss: 0.0326 Epoch [12/64], Step [400/600], Loss: 0.0230 Epoch [12/64], Step [500/600], Loss: 0.0421 Epoch [12/64], Step [600/600], Loss: 0.0023 Epoch [13/64], Step [100/600], Loss: 0.0036 Epoch [13/64], Step [200/600], Loss: 0.0044 Epoch [13/64], Step [300/600], Loss: 0.0071 Epoch [13/64], Step [400/600], Loss: 0.0045 Epoch [13/64], Step [500/600], Loss: 0.0010 Epoch [13/64], Step [600/600], Loss: 0.0055 Epoch [14/64], Step [100/600], Loss: 0.0016 Epoch [14/64], Step [200/600], Loss: 0.0017 Epoch [14/64], Step [300/600], Loss: 0.0065 Epoch [14/64], Step [400/600], Loss: 0.0050 Epoch [14/64], Step [500/600], Loss: 0.0001 Epoch [14/64], Step [600/600], Loss: 0.0003 Epoch [15/64], Step [100/600], Loss: 0.0012 Epoch [15/64], Step [200/600], Loss: 0.0009 Epoch [15/64], Step [300/600], Loss: 0.0094 Epoch [15/64], Step [400/600], Loss: 0.0116 Epoch [15/64], Step [500/600], Loss: 0.0014 Epoch [15/64], Step [600/600], Loss: 0.0104 Epoch [16/64], Step [100/600], Loss: 0.0073 Epoch [16/64], Step [200/600], Loss: 0.0025 Epoch [16/64], Step [300/600], Loss: 0.0006 Epoch [16/64], Step [400/600], Loss: 0.0011 Epoch [16/64], Step [500/600], Loss: 0.0163 Epoch [16/64], Step [600/600], Loss: 0.0062 Epoch [17/64], Step [100/600], Loss: 0.0027 Epoch [17/64], Step [200/600], Loss: 0.0017 Epoch [17/64], Step [300/600], Loss: 0.0011 Epoch [17/64], Step [400/600], Loss: 0.0119 Epoch [17/64], Step [500/600], Loss: 0.0002 Epoch [17/64], Step [600/600], Loss: 0.0004 Epoch [18/64], Step [100/600], Loss: 0.0008 Epoch [18/64], Step [200/600], Loss: 0.0086 Epoch [18/64], Step [300/600], Loss: 0.0011 Epoch [18/64], Step [400/600], Loss: 0.0016 Epoch [18/64], Step [500/600], Loss: 0.0014 Epoch [18/64], Step [600/600], Loss: 0.0011 Epoch [19/64], Step [100/600], Loss: 0.0010 Epoch [19/64], Step [200/600], Loss: 0.0001 Epoch [19/64], Step [300/600], Loss: 0.0102 Epoch [19/64], Step [400/600], Loss: 0.0030 Epoch [19/64], Step [500/600], Loss: 0.0014 Epoch [19/64], Step [600/600], Loss: 0.0001 Epoch [20/64], Step [100/600], Loss: 0.0002 Epoch [20/64], Step [200/600], Loss: 0.0010 Epoch [20/64], Step [300/600], Loss: 0.0016 Epoch [20/64], Step [400/600], Loss: 0.0002 Epoch [20/64], Step [500/600], Loss: 0.0031 Epoch [20/64], Step [600/600], Loss: 0.0045 Epoch [21/64], Step [100/600], Loss: 0.0005 Epoch [21/64], Step [200/600], Loss: 0.0001 Epoch [21/64], Step [300/600], Loss: 0.0031 Epoch [21/64], Step [400/600], Loss: 0.0026 Epoch [21/64], Step [500/600], Loss: 0.0011 Epoch [21/64], Step [600/600], Loss: 0.0001 Epoch [22/64], Step [100/600], Loss: 0.0020 Epoch [22/64], Step [200/600], Loss: 0.0008 Epoch [22/64], Step [300/600], Loss: 0.0017 Epoch [22/64], Step [400/600], Loss: 0.0001 Epoch [22/64], Step [500/600], Loss: 0.0120 Epoch [22/64], Step [600/600], Loss: 0.0079 Epoch [23/64], Step [100/600], Loss: 0.0014 Epoch [23/64], Step [200/600], Loss: 0.0037 Epoch [23/64], Step [300/600], Loss: 0.0078 Epoch [23/64], Step [400/600], Loss: 0.0001 Epoch [23/64], Step [500/600], Loss: 0.0000 Epoch [23/64], Step [600/600], Loss: 0.0034 Epoch [24/64], Step [100/600], Loss: 0.0008 Epoch [24/64], Step [200/600], Loss: 0.0025 Epoch [24/64], Step [300/600], Loss: 0.0009 Epoch [24/64], Step [400/600], Loss: 0.0020 Epoch [24/64], Step [500/600], Loss: 0.0003 Epoch [24/64], Step [600/600], Loss: 0.0011 Epoch [25/64], Step [100/600], Loss: 0.0002 Epoch [25/64], Step [200/600], Loss: 0.0002 Epoch [25/64], Step [300/600], Loss: 0.0003 Epoch [25/64], Step [400/600], Loss: 0.0001 Epoch [25/64], Step [500/600], Loss: 0.0046 Epoch [25/64], Step [600/600], Loss: 0.0002 Epoch [26/64], Step [100/600], Loss: 0.0020 Epoch [26/64], Step [200/600], Loss: 0.0006 Epoch [26/64], Step [300/600], Loss: 0.0006 Epoch [26/64], Step [400/600], Loss: 0.0009 Epoch [26/64], Step [500/600], Loss: 0.0044 Epoch [26/64], Step [600/600], Loss: 0.0006 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0002 Epoch [27/64], Step [300/600], Loss: 0.0007 Epoch [27/64], Step [400/600], Loss: 0.0008 Epoch [27/64], Step [500/600], Loss: 0.0014 Epoch [27/64], Step [600/600], Loss: 0.0012 Epoch [28/64], Step [100/600], Loss: 0.0002 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0004 Epoch [28/64], Step [400/600], Loss: 0.0002 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0004 Epoch [29/64], Step [100/600], Loss: 0.0000 Epoch [29/64], Step [200/600], Loss: 0.0000 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0000 Epoch [29/64], Step [500/600], Loss: 0.0035 Epoch [29/64], Step [600/600], Loss: 0.0083 Epoch [30/64], Step [100/600], Loss: 0.0087 Epoch [30/64], Step [200/600], Loss: 0.0020 Epoch [30/64], Step [300/600], Loss: 0.0077 Epoch [30/64], Step [400/600], Loss: 0.0037 Epoch [30/64], Step [500/600], Loss: 0.0004 Epoch [30/64], Step [600/600], Loss: 0.0033 Epoch [31/64], Step [100/600], Loss: 0.0020 Epoch [31/64], Step [200/600], Loss: 0.0008 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0013 Epoch [31/64], Step [500/600], Loss: 0.0002 Epoch [31/64], Step [600/600], Loss: 0.0002 Epoch [32/64], Step [100/600], Loss: 0.0039 Epoch [32/64], Step [200/600], Loss: 0.0004 Epoch [32/64], Step [300/600], Loss: 0.0026 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0005 Epoch [32/64], Step [600/600], Loss: 0.0001 Epoch [33/64], Step [100/600], Loss: 0.0003 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0003 Epoch [33/64], Step [500/600], Loss: 0.0003 Epoch [33/64], Step [600/600], Loss: 0.0015 Epoch [34/64], Step [100/600], Loss: 0.0000 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0000 Epoch [34/64], Step [500/600], Loss: 0.0008 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0002 Epoch [35/64], Step [300/600], Loss: 0.0000 Epoch [35/64], Step [400/600], Loss: 0.0000 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0004 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0301 Epoch [38/64], Step [500/600], Loss: 0.0244 Epoch [38/64], Step [600/600], Loss: 0.0003 Epoch [39/64], Step [100/600], Loss: 0.0080 Epoch [39/64], Step [200/600], Loss: 0.0029 Epoch [39/64], Step [300/600], Loss: 0.0024 Epoch [39/64], Step [400/600], Loss: 0.0032 Epoch [39/64], Step [500/600], Loss: 0.0008 Epoch [39/64], Step [600/600], Loss: 0.0084 Epoch [40/64], Step [100/600], Loss: 0.0015 Epoch [40/64], Step [200/600], Loss: 0.0002 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0002 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0004 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0008 Epoch [41/64], Step [400/600], Loss: 0.0003 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0005 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0002 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0002 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0003 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0006 Epoch [44/64], Step [300/600], Loss: 0.0001 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0001 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0002 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0002 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0718 Epoch [49/64], Step [100/600], Loss: 0.0007 Epoch [49/64], Step [200/600], Loss: 0.0034 Epoch [49/64], Step [300/600], Loss: 0.0434 Epoch [49/64], Step [400/600], Loss: 0.0002 Epoch [49/64], Step [500/600], Loss: 0.0007 Epoch [49/64], Step [600/600], Loss: 0.0006 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0004 Epoch [50/64], Step [300/600], Loss: 0.0007 Epoch [50/64], Step [400/600], Loss: 0.0002 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0013 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0004 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0002 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0005 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0002 Epoch [53/64], Step [200/600], Loss: 0.0002 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0002 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0002 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0002 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0001 Epoch [56/64], Step [600/600], Loss: 0.0001 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0002 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0068 Epoch [60/64], Step [400/600], Loss: 0.0063 Epoch [60/64], Step [500/600], Loss: 0.0111 Epoch [60/64], Step [600/600], Loss: 0.0033 Epoch [61/64], Step [100/600], Loss: 0.0016 Epoch [61/64], Step [200/600], Loss: 0.0044 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0003 Epoch [61/64], Step [500/600], Loss: 0.0080 Epoch [61/64], Step [600/600], Loss: 0.0005 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0002 Epoch [62/64], Step [400/600], Loss: 0.0003 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0002 Epoch [63/64], Step [100/600], Loss: 0.0001 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0001 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0002 Pytorch test completed in 438.339 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins13560804707430881716.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS