Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 95789 queued and waiting for resources srun: job 95789 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2379 Epoch [1/64], Step [200/600], Loss: 0.1219 Epoch [1/64], Step [300/600], Loss: 0.0626 Epoch [1/64], Step [400/600], Loss: 0.0784 Epoch [1/64], Step [500/600], Loss: 0.0644 Epoch [1/64], Step [600/600], Loss: 0.1347 Epoch [2/64], Step [100/600], Loss: 0.1200 Epoch [2/64], Step [200/600], Loss: 0.0978 Epoch [2/64], Step [300/600], Loss: 0.0596 Epoch [2/64], Step [400/600], Loss: 0.0158 Epoch [2/64], Step [500/600], Loss: 0.0369 Epoch [2/64], Step [600/600], Loss: 0.0463 Epoch [3/64], Step [100/600], Loss: 0.0787 Epoch [3/64], Step [200/600], Loss: 0.0529 Epoch [3/64], Step [300/600], Loss: 0.0164 Epoch [3/64], Step [400/600], Loss: 0.0095 Epoch [3/64], Step [500/600], Loss: 0.0278 Epoch [3/64], Step [600/600], Loss: 0.0127 Epoch [4/64], Step [100/600], Loss: 0.0223 Epoch [4/64], Step [200/600], Loss: 0.0236 Epoch [4/64], Step [300/600], Loss: 0.0821 Epoch [4/64], Step [400/600], Loss: 0.0878 Epoch [4/64], Step [500/600], Loss: 0.0168 Epoch [4/64], Step [600/600], Loss: 0.0613 Epoch [5/64], Step [100/600], Loss: 0.0131 Epoch [5/64], Step [200/600], Loss: 0.0127 Epoch [5/64], Step [300/600], Loss: 0.0269 Epoch [5/64], Step [400/600], Loss: 0.0244 Epoch [5/64], Step [500/600], Loss: 0.0178 Epoch [5/64], Step [600/600], Loss: 0.0296 Epoch [6/64], Step [100/600], Loss: 0.0049 Epoch [6/64], Step [200/600], Loss: 0.0287 Epoch [6/64], Step [300/600], Loss: 0.0614 Epoch [6/64], Step [400/600], Loss: 0.0187 Epoch [6/64], Step [500/600], Loss: 0.0059 Epoch [6/64], Step [600/600], Loss: 0.0032 Epoch [7/64], Step [100/600], Loss: 0.0249 Epoch [7/64], Step [200/600], Loss: 0.0078 Epoch [7/64], Step [300/600], Loss: 0.0192 Epoch [7/64], Step [400/600], Loss: 0.0048 Epoch [7/64], Step [500/600], Loss: 0.0278 Epoch [7/64], Step [600/600], Loss: 0.0316 Epoch [8/64], Step [100/600], Loss: 0.0016 Epoch [8/64], Step [200/600], Loss: 0.0078 Epoch [8/64], Step [300/600], Loss: 0.0176 Epoch [8/64], Step [400/600], Loss: 0.0217 Epoch [8/64], Step [500/600], Loss: 0.0345 Epoch [8/64], Step [600/600], Loss: 0.0081 Epoch [9/64], Step [100/600], Loss: 0.0037 Epoch [9/64], Step [200/600], Loss: 0.0056 Epoch [9/64], Step [300/600], Loss: 0.0276 Epoch [9/64], Step [400/600], Loss: 0.0033 Epoch [9/64], Step [500/600], Loss: 0.0582 Epoch [9/64], Step [600/600], Loss: 0.0088 Epoch [10/64], Step [100/600], Loss: 0.0096 Epoch [10/64], Step [200/600], Loss: 0.0099 Epoch [10/64], Step [300/600], Loss: 0.0333 Epoch [10/64], Step [400/600], Loss: 0.0043 Epoch [10/64], Step [500/600], Loss: 0.0011 Epoch [10/64], Step [600/600], Loss: 0.0315 Epoch [11/64], Step [100/600], Loss: 0.0053 Epoch [11/64], Step [200/600], Loss: 0.0081 Epoch [11/64], Step [300/600], Loss: 0.0022 Epoch [11/64], Step [400/600], Loss: 0.0082 Epoch [11/64], Step [500/600], Loss: 0.0382 Epoch [11/64], Step [600/600], Loss: 0.0124 Epoch [12/64], Step [100/600], Loss: 0.0024 Epoch [12/64], Step [200/600], Loss: 0.0031 Epoch [12/64], Step [300/600], Loss: 0.0065 Epoch [12/64], Step [400/600], Loss: 0.0029 Epoch [12/64], Step [500/600], Loss: 0.0009 Epoch [12/64], Step [600/600], Loss: 0.0149 Epoch [13/64], Step [100/600], Loss: 0.0119 Epoch [13/64], Step [200/600], Loss: 0.0073 Epoch [13/64], Step [300/600], Loss: 0.0344 Epoch [13/64], Step [400/600], Loss: 0.0179 Epoch [13/64], Step [500/600], Loss: 0.0024 Epoch [13/64], Step [600/600], Loss: 0.0004 Epoch [14/64], Step [100/600], Loss: 0.0055 Epoch [14/64], Step [200/600], Loss: 0.0016 Epoch [14/64], Step [300/600], Loss: 0.0007 Epoch [14/64], Step [400/600], Loss: 0.0004 Epoch [14/64], Step [500/600], Loss: 0.0151 Epoch [14/64], Step [600/600], Loss: 0.0057 Epoch [15/64], Step [100/600], Loss: 0.0011 Epoch [15/64], Step [200/600], Loss: 0.0017 Epoch [15/64], Step [300/600], Loss: 0.0148 Epoch [15/64], Step [400/600], Loss: 0.0048 Epoch [15/64], Step [500/600], Loss: 0.0086 Epoch [15/64], Step [600/600], Loss: 0.0004 Epoch [16/64], Step [100/600], Loss: 0.0137 Epoch [16/64], Step [200/600], Loss: 0.0089 Epoch [16/64], Step [300/600], Loss: 0.0030 Epoch [16/64], Step [400/600], Loss: 0.0004 Epoch [16/64], Step [500/600], Loss: 0.0029 Epoch [16/64], Step [600/600], Loss: 0.0002 Epoch [17/64], Step [100/600], Loss: 0.0008 Epoch [17/64], Step [200/600], Loss: 0.0050 Epoch [17/64], Step [300/600], Loss: 0.0447 Epoch [17/64], Step [400/600], Loss: 0.0145 Epoch [17/64], Step [500/600], Loss: 0.0008 Epoch [17/64], Step [600/600], Loss: 0.0117 Epoch [18/64], Step [100/600], Loss: 0.0112 Epoch [18/64], Step [200/600], Loss: 0.0028 Epoch [18/64], Step [300/600], Loss: 0.0020 Epoch [18/64], Step [400/600], Loss: 0.0022 Epoch [18/64], Step [500/600], Loss: 0.0003 Epoch [18/64], Step [600/600], Loss: 0.0362 Epoch [19/64], Step [100/600], Loss: 0.0010 Epoch [19/64], Step [200/600], Loss: 0.0007 Epoch [19/64], Step [300/600], Loss: 0.0081 Epoch [19/64], Step [400/600], Loss: 0.0014 Epoch [19/64], Step [500/600], Loss: 0.0007 Epoch [19/64], Step [600/600], Loss: 0.0011 Epoch [20/64], Step [100/600], Loss: 0.0042 Epoch [20/64], Step [200/600], Loss: 0.0004 Epoch [20/64], Step [300/600], Loss: 0.0011 Epoch [20/64], Step [400/600], Loss: 0.0025 Epoch [20/64], Step [500/600], Loss: 0.0012 Epoch [20/64], Step [600/600], Loss: 0.0041 Epoch [21/64], Step [100/600], Loss: 0.0037 Epoch [21/64], Step [200/600], Loss: 0.0026 Epoch [21/64], Step [300/600], Loss: 0.0116 Epoch [21/64], Step [400/600], Loss: 0.0255 Epoch [21/64], Step [500/600], Loss: 0.0002 Epoch [21/64], Step [600/600], Loss: 0.0161 Epoch [22/64], Step [100/600], Loss: 0.0003 Epoch [22/64], Step [200/600], Loss: 0.0006 Epoch [22/64], Step [300/600], Loss: 0.0006 Epoch [22/64], Step [400/600], Loss: 0.0025 Epoch [22/64], Step [500/600], Loss: 0.0006 Epoch [22/64], Step [600/600], Loss: 0.0032 Epoch [23/64], Step [100/600], Loss: 0.0014 Epoch [23/64], Step [200/600], Loss: 0.0050 Epoch [23/64], Step [300/600], Loss: 0.0009 Epoch [23/64], Step [400/600], Loss: 0.0026 Epoch [23/64], Step [500/600], Loss: 0.0080 Epoch [23/64], Step [600/600], Loss: 0.0047 Epoch [24/64], Step [100/600], Loss: 0.0036 Epoch [24/64], Step [200/600], Loss: 0.0011 Epoch [24/64], Step [300/600], Loss: 0.0011 Epoch [24/64], Step [400/600], Loss: 0.0007 Epoch [24/64], Step [500/600], Loss: 0.0031 Epoch [24/64], Step [600/600], Loss: 0.0010 Epoch [25/64], Step [100/600], Loss: 0.0003 Epoch [25/64], Step [200/600], Loss: 0.0093 Epoch [25/64], Step [300/600], Loss: 0.0013 Epoch [25/64], Step [400/600], Loss: 0.0003 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0012 Epoch [26/64], Step [100/600], Loss: 0.0053 Epoch [26/64], Step [200/600], Loss: 0.0029 Epoch [26/64], Step [300/600], Loss: 0.0005 Epoch [26/64], Step [400/600], Loss: 0.0014 Epoch [26/64], Step [500/600], Loss: 0.0035 Epoch [26/64], Step [600/600], Loss: 0.0004 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0002 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0030 Epoch [27/64], Step [500/600], Loss: 0.0010 Epoch [27/64], Step [600/600], Loss: 0.0002 Epoch [28/64], Step [100/600], Loss: 0.0006 Epoch [28/64], Step [200/600], Loss: 0.0006 Epoch [28/64], Step [300/600], Loss: 0.0010 Epoch [28/64], Step [400/600], Loss: 0.0002 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0002 Epoch [29/64], Step [100/600], Loss: 0.0002 Epoch [29/64], Step [200/600], Loss: 0.0002 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0000 Epoch [29/64], Step [500/600], Loss: 0.0001 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0003 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0001 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0005 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.1516 Epoch [32/64], Step [100/600], Loss: 0.0024 Epoch [32/64], Step [200/600], Loss: 0.0176 Epoch [32/64], Step [300/600], Loss: 0.0078 Epoch [32/64], Step [400/600], Loss: 0.0015 Epoch [32/64], Step [500/600], Loss: 0.0005 Epoch [32/64], Step [600/600], Loss: 0.0006 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0000 Epoch [33/64], Step [600/600], Loss: 0.0070 Epoch [34/64], Step [100/600], Loss: 0.0000 Epoch [34/64], Step [200/600], Loss: 0.0004 Epoch [34/64], Step [300/600], Loss: 0.0005 Epoch [34/64], Step [400/600], Loss: 0.0003 Epoch [34/64], Step [500/600], Loss: 0.0006 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0005 Epoch [35/64], Step [200/600], Loss: 0.0002 Epoch [35/64], Step [300/600], Loss: 0.0002 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0000 Epoch [36/64], Step [100/600], Loss: 0.0003 Epoch [36/64], Step [200/600], Loss: 0.0002 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0009 Epoch [37/64], Step [400/600], Loss: 0.0002 Epoch [37/64], Step [500/600], Loss: 0.0002 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0002 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0002 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0007 Epoch [39/64], Step [400/600], Loss: 0.0330 Epoch [39/64], Step [500/600], Loss: 0.0014 Epoch [39/64], Step [600/600], Loss: 0.0025 Epoch [40/64], Step [100/600], Loss: 0.0136 Epoch [40/64], Step [200/600], Loss: 0.0002 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0003 Epoch [40/64], Step [500/600], Loss: 0.0024 Epoch [40/64], Step [600/600], Loss: 0.0003 Epoch [41/64], Step [100/600], Loss: 0.0005 Epoch [41/64], Step [200/600], Loss: 0.0010 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0003 Epoch [41/64], Step [500/600], Loss: 0.0004 Epoch [41/64], Step [600/600], Loss: 0.0041 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0005 Epoch [42/64], Step [600/600], Loss: 0.0026 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0001 Epoch [43/64], Step [500/600], Loss: 0.0002 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0003 Epoch [44/64], Step [200/600], Loss: 0.0001 Epoch [44/64], Step [300/600], Loss: 0.0001 Epoch [44/64], Step [400/600], Loss: 0.0002 Epoch [44/64], Step [500/600], Loss: 0.0002 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0003 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0003 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0009 Epoch [48/64], Step [600/600], Loss: 0.0023 Epoch [49/64], Step [100/600], Loss: 0.0015 Epoch [49/64], Step [200/600], Loss: 0.0005 Epoch [49/64], Step [300/600], Loss: 0.0005 Epoch [49/64], Step [400/600], Loss: 0.0004 Epoch [49/64], Step [500/600], Loss: 0.0166 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0011 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0007 Epoch [50/64], Step [400/600], Loss: 0.0003 Epoch [50/64], Step [500/600], Loss: 0.0016 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0002 Epoch [51/64], Step [600/600], Loss: 0.0011 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0004 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0001 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0003 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0001 Epoch [56/64], Step [300/600], Loss: 0.0002 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0001 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0003 Epoch [59/64], Step [600/600], Loss: 0.0048 Epoch [60/64], Step [100/600], Loss: 0.0066 Epoch [60/64], Step [200/600], Loss: 0.0002 Epoch [60/64], Step [300/600], Loss: 0.0017 Epoch [60/64], Step [400/600], Loss: 0.0044 Epoch [60/64], Step [500/600], Loss: 0.0007 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0001 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0026 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0003 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0009 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0001 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 438.774 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins6140438211960137736.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS