Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 95990 queued and waiting for resources srun: job 95990 has been allocated resources Running benchmark on hydro06 Epoch [1/64], Step [100/600], Loss: 0.2792 Epoch [1/64], Step [200/600], Loss: 0.1616 Epoch [1/64], Step [300/600], Loss: 0.0705 Epoch [1/64], Step [400/600], Loss: 0.0555 Epoch [1/64], Step [500/600], Loss: 0.0503 Epoch [1/64], Step [600/600], Loss: 0.0375 Epoch [2/64], Step [100/600], Loss: 0.0571 Epoch [2/64], Step [200/600], Loss: 0.0253 Epoch [2/64], Step [300/600], Loss: 0.0419 Epoch [2/64], Step [400/600], Loss: 0.0309 Epoch [2/64], Step [500/600], Loss: 0.0336 Epoch [2/64], Step [600/600], Loss: 0.0230 Epoch [3/64], Step [100/600], Loss: 0.0224 Epoch [3/64], Step [200/600], Loss: 0.0106 Epoch [3/64], Step [300/600], Loss: 0.0151 Epoch [3/64], Step [400/600], Loss: 0.0197 Epoch [3/64], Step [500/600], Loss: 0.0633 Epoch [3/64], Step [600/600], Loss: 0.0334 Epoch [4/64], Step [100/600], Loss: 0.0518 Epoch [4/64], Step [200/600], Loss: 0.1037 Epoch [4/64], Step [300/600], Loss: 0.0341 Epoch [4/64], Step [400/600], Loss: 0.0554 Epoch [4/64], Step [500/600], Loss: 0.0069 Epoch [4/64], Step [600/600], Loss: 0.0286 Epoch [5/64], Step [100/600], Loss: 0.0243 Epoch [5/64], Step [200/600], Loss: 0.0333 Epoch [5/64], Step [300/600], Loss: 0.0871 Epoch [5/64], Step [400/600], Loss: 0.0011 Epoch [5/64], Step [500/600], Loss: 0.0338 Epoch [5/64], Step [600/600], Loss: 0.0226 Epoch [6/64], Step [100/600], Loss: 0.0166 Epoch [6/64], Step [200/600], Loss: 0.0116 Epoch [6/64], Step [300/600], Loss: 0.0159 Epoch [6/64], Step [400/600], Loss: 0.0253 Epoch [6/64], Step [500/600], Loss: 0.0133 Epoch [6/64], Step [600/600], Loss: 0.0062 Epoch [7/64], Step [100/600], Loss: 0.0103 Epoch [7/64], Step [200/600], Loss: 0.0035 Epoch [7/64], Step [300/600], Loss: 0.0040 Epoch [7/64], Step [400/600], Loss: 0.0457 Epoch [7/64], Step [500/600], Loss: 0.0402 Epoch [7/64], Step [600/600], Loss: 0.0063 Epoch [8/64], Step [100/600], Loss: 0.0134 Epoch [8/64], Step [200/600], Loss: 0.0403 Epoch [8/64], Step [300/600], Loss: 0.0176 Epoch [8/64], Step [400/600], Loss: 0.0055 Epoch [8/64], Step [500/600], Loss: 0.0111 Epoch [8/64], Step [600/600], Loss: 0.0021 Epoch [9/64], Step [100/600], Loss: 0.0054 Epoch [9/64], Step [200/600], Loss: 0.0322 Epoch [9/64], Step [300/600], Loss: 0.0030 Epoch [9/64], Step [400/600], Loss: 0.0036 Epoch [9/64], Step [500/600], Loss: 0.0078 Epoch [9/64], Step [600/600], Loss: 0.0473 Epoch [10/64], Step [100/600], Loss: 0.0348 Epoch [10/64], Step [200/600], Loss: 0.0128 Epoch [10/64], Step [300/600], Loss: 0.0284 Epoch [10/64], Step [400/600], Loss: 0.0146 Epoch [10/64], Step [500/600], Loss: 0.0098 Epoch [10/64], Step [600/600], Loss: 0.0017 Epoch [11/64], Step [100/600], Loss: 0.0024 Epoch [11/64], Step [200/600], Loss: 0.0064 Epoch [11/64], Step [300/600], Loss: 0.0222 Epoch [11/64], Step [400/600], Loss: 0.0088 Epoch [11/64], Step [500/600], Loss: 0.0134 Epoch [11/64], Step [600/600], Loss: 0.0071 Epoch [12/64], Step [100/600], Loss: 0.0029 Epoch [12/64], Step [200/600], Loss: 0.0009 Epoch [12/64], Step [300/600], Loss: 0.0066 Epoch [12/64], Step [400/600], Loss: 0.0022 Epoch [12/64], Step [500/600], Loss: 0.0027 Epoch [12/64], Step [600/600], Loss: 0.0029 Epoch [13/64], Step [100/600], Loss: 0.0041 Epoch [13/64], Step [200/600], Loss: 0.0085 Epoch [13/64], Step [300/600], Loss: 0.0029 Epoch [13/64], Step [400/600], Loss: 0.0018 Epoch [13/64], Step [500/600], Loss: 0.0273 Epoch [13/64], Step [600/600], Loss: 0.0054 Epoch [14/64], Step [100/600], Loss: 0.0106 Epoch [14/64], Step [200/600], Loss: 0.0029 Epoch [14/64], Step [300/600], Loss: 0.0006 Epoch [14/64], Step [400/600], Loss: 0.0034 Epoch [14/64], Step [500/600], Loss: 0.0027 Epoch [14/64], Step [600/600], Loss: 0.0034 Epoch [15/64], Step [100/600], Loss: 0.0044 Epoch [15/64], Step [200/600], Loss: 0.0001 Epoch [15/64], Step [300/600], Loss: 0.0021 Epoch [15/64], Step [400/600], Loss: 0.0011 Epoch [15/64], Step [500/600], Loss: 0.0232 Epoch [15/64], Step [600/600], Loss: 0.0052 Epoch [16/64], Step [100/600], Loss: 0.0038 Epoch [16/64], Step [200/600], Loss: 0.0004 Epoch [16/64], Step [300/600], Loss: 0.0027 Epoch [16/64], Step [400/600], Loss: 0.0067 Epoch [16/64], Step [500/600], Loss: 0.0264 Epoch [16/64], Step [600/600], Loss: 0.0083 Epoch [17/64], Step [100/600], Loss: 0.0030 Epoch [17/64], Step [200/600], Loss: 0.0167 Epoch [17/64], Step [300/600], Loss: 0.0011 Epoch [17/64], Step [400/600], Loss: 0.0008 Epoch [17/64], Step [500/600], Loss: 0.0003 Epoch [17/64], Step [600/600], Loss: 0.0020 Epoch [18/64], Step [100/600], Loss: 0.0003 Epoch [18/64], Step [200/600], Loss: 0.0006 Epoch [18/64], Step [300/600], Loss: 0.0010 Epoch [18/64], Step [400/600], Loss: 0.0022 Epoch [18/64], Step [500/600], Loss: 0.0035 Epoch [18/64], Step [600/600], Loss: 0.0025 Epoch [19/64], Step [100/600], Loss: 0.0140 Epoch [19/64], Step [200/600], Loss: 0.0025 Epoch [19/64], Step [300/600], Loss: 0.0007 Epoch [19/64], Step [400/600], Loss: 0.0001 Epoch [19/64], Step [500/600], Loss: 0.0007 Epoch [19/64], Step [600/600], Loss: 0.0008 Epoch [20/64], Step [100/600], Loss: 0.0017 Epoch [20/64], Step [200/600], Loss: 0.0001 Epoch [20/64], Step [300/600], Loss: 0.0009 Epoch [20/64], Step [400/600], Loss: 0.0022 Epoch [20/64], Step [500/600], Loss: 0.0001 Epoch [20/64], Step [600/600], Loss: 0.0009 Epoch [21/64], Step [100/600], Loss: 0.0011 Epoch [21/64], Step [200/600], Loss: 0.0004 Epoch [21/64], Step [300/600], Loss: 0.0003 Epoch [21/64], Step [400/600], Loss: 0.0000 Epoch [21/64], Step [500/600], Loss: 0.0002 Epoch [21/64], Step [600/600], Loss: 0.0044 Epoch [22/64], Step [100/600], Loss: 0.0002 Epoch [22/64], Step [200/600], Loss: 0.0018 Epoch [22/64], Step [300/600], Loss: 0.0028 Epoch [22/64], Step [400/600], Loss: 0.0009 Epoch [22/64], Step [500/600], Loss: 0.0008 Epoch [22/64], Step [600/600], Loss: 0.0029 Epoch [23/64], Step [100/600], Loss: 0.0004 Epoch [23/64], Step [200/600], Loss: 0.0009 Epoch [23/64], Step [300/600], Loss: 0.0002 Epoch [23/64], Step [400/600], Loss: 0.0024 Epoch [23/64], Step [500/600], Loss: 0.0004 Epoch [23/64], Step [600/600], Loss: 0.0003 Epoch [24/64], Step [100/600], Loss: 0.0003 Epoch [24/64], Step [200/600], Loss: 0.0005 Epoch [24/64], Step [300/600], Loss: 0.0003 Epoch [24/64], Step [400/600], Loss: 0.0001 Epoch [24/64], Step [500/600], Loss: 0.0005 Epoch [24/64], Step [600/600], Loss: 0.0004 Epoch [25/64], Step [100/600], Loss: 0.0004 Epoch [25/64], Step [200/600], Loss: 0.0002 Epoch [25/64], Step [300/600], Loss: 0.0004 Epoch [25/64], Step [400/600], Loss: 0.0002 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0000 Epoch [26/64], Step [100/600], Loss: 0.0000 Epoch [26/64], Step [200/600], Loss: 0.0002 Epoch [26/64], Step [300/600], Loss: 0.0002 Epoch [26/64], Step [400/600], Loss: 0.0002 Epoch [26/64], Step [500/600], Loss: 0.0010 Epoch [26/64], Step [600/600], Loss: 0.0079 Epoch [27/64], Step [100/600], Loss: 0.0554 Epoch [27/64], Step [200/600], Loss: 0.0014 Epoch [27/64], Step [300/600], Loss: 0.0012 Epoch [27/64], Step [400/600], Loss: 0.0009 Epoch [27/64], Step [500/600], Loss: 0.0096 Epoch [27/64], Step [600/600], Loss: 0.0021 Epoch [28/64], Step [100/600], Loss: 0.0011 Epoch [28/64], Step [200/600], Loss: 0.0002 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0006 Epoch [28/64], Step [500/600], Loss: 0.0002 Epoch [28/64], Step [600/600], Loss: 0.0024 Epoch [29/64], Step [100/600], Loss: 0.0005 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0000 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0008 Epoch [29/64], Step [600/600], Loss: 0.0003 Epoch [30/64], Step [100/600], Loss: 0.0009 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0006 Epoch [30/64], Step [500/600], Loss: 0.0000 Epoch [30/64], Step [600/600], Loss: 0.0009 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0000 Epoch [31/64], Step [400/600], Loss: 0.0004 Epoch [31/64], Step [500/600], Loss: 0.0002 Epoch [31/64], Step [600/600], Loss: 0.0004 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0003 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0005 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0000 Epoch [33/64], Step [500/600], Loss: 0.0000 Epoch [33/64], Step [600/600], Loss: 0.0003 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0000 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0206 Epoch [35/64], Step [200/600], Loss: 0.0089 Epoch [35/64], Step [300/600], Loss: 0.0036 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0115 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0019 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0003 Epoch [36/64], Step [400/600], Loss: 0.0010 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0004 Epoch [38/64], Step [100/600], Loss: 0.0002 Epoch [38/64], Step [200/600], Loss: 0.0002 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0003 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0002 Epoch [39/64], Step [600/600], Loss: 0.0000 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0002 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0002 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0002 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0002 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0907 Epoch [45/64], Step [100/600], Loss: 0.0202 Epoch [45/64], Step [200/600], Loss: 0.0003 Epoch [45/64], Step [300/600], Loss: 0.0230 Epoch [45/64], Step [400/600], Loss: 0.0027 Epoch [45/64], Step [500/600], Loss: 0.0003 Epoch [45/64], Step [600/600], Loss: 0.0074 Epoch [46/64], Step [100/600], Loss: 0.0034 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0003 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0001 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0002 Epoch [49/64], Step [100/600], Loss: 0.0002 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0002 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0001 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0003 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0001 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0101 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0041 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0010 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0008 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0004 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0001 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0002 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0001 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 445.154 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins6512593118933398706.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS