Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96447 queued and waiting for resources srun: job 96447 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.1870 Epoch [1/64], Step [200/600], Loss: 0.0944 Epoch [1/64], Step [300/600], Loss: 0.0624 Epoch [1/64], Step [400/600], Loss: 0.0660 Epoch [1/64], Step [500/600], Loss: 0.0764 Epoch [1/64], Step [600/600], Loss: 0.1219 Epoch [2/64], Step [100/600], Loss: 0.0521 Epoch [2/64], Step [200/600], Loss: 0.0231 Epoch [2/64], Step [300/600], Loss: 0.0731 Epoch [2/64], Step [400/600], Loss: 0.0715 Epoch [2/64], Step [500/600], Loss: 0.0486 Epoch [2/64], Step [600/600], Loss: 0.0178 Epoch [3/64], Step [100/600], Loss: 0.0238 Epoch [3/64], Step [200/600], Loss: 0.0654 Epoch [3/64], Step [300/600], Loss: 0.0138 Epoch [3/64], Step [400/600], Loss: 0.0872 Epoch [3/64], Step [500/600], Loss: 0.0581 Epoch [3/64], Step [600/600], Loss: 0.0115 Epoch [4/64], Step [100/600], Loss: 0.0270 Epoch [4/64], Step [200/600], Loss: 0.0309 Epoch [4/64], Step [300/600], Loss: 0.0287 Epoch [4/64], Step [400/600], Loss: 0.0544 Epoch [4/64], Step [500/600], Loss: 0.0141 Epoch [4/64], Step [600/600], Loss: 0.0401 Epoch [5/64], Step [100/600], Loss: 0.0061 Epoch [5/64], Step [200/600], Loss: 0.0200 Epoch [5/64], Step [300/600], Loss: 0.0240 Epoch [5/64], Step [400/600], Loss: 0.0378 Epoch [5/64], Step [500/600], Loss: 0.0211 Epoch [5/64], Step [600/600], Loss: 0.0399 Epoch [6/64], Step [100/600], Loss: 0.0226 Epoch [6/64], Step [200/600], Loss: 0.0634 Epoch [6/64], Step [300/600], Loss: 0.0357 Epoch [6/64], Step [400/600], Loss: 0.0043 Epoch [6/64], Step [500/600], Loss: 0.0151 Epoch [6/64], Step [600/600], Loss: 0.0343 Epoch [7/64], Step [100/600], Loss: 0.0045 Epoch [7/64], Step [200/600], Loss: 0.0087 Epoch [7/64], Step [300/600], Loss: 0.0036 Epoch [7/64], Step [400/600], Loss: 0.0087 Epoch [7/64], Step [500/600], Loss: 0.0859 Epoch [7/64], Step [600/600], Loss: 0.0219 Epoch [8/64], Step [100/600], Loss: 0.0149 Epoch [8/64], Step [200/600], Loss: 0.0023 Epoch [8/64], Step [300/600], Loss: 0.0680 Epoch [8/64], Step [400/600], Loss: 0.0219 Epoch [8/64], Step [500/600], Loss: 0.0022 Epoch [8/64], Step [600/600], Loss: 0.0297 Epoch [9/64], Step [100/600], Loss: 0.0398 Epoch [9/64], Step [200/600], Loss: 0.0006 Epoch [9/64], Step [300/600], Loss: 0.0029 Epoch [9/64], Step [400/600], Loss: 0.0235 Epoch [9/64], Step [500/600], Loss: 0.0188 Epoch [9/64], Step [600/600], Loss: 0.0167 Epoch [10/64], Step [100/600], Loss: 0.0073 Epoch [10/64], Step [200/600], Loss: 0.0019 Epoch [10/64], Step [300/600], Loss: 0.0007 Epoch [10/64], Step [400/600], Loss: 0.0048 Epoch [10/64], Step [500/600], Loss: 0.0113 Epoch [10/64], Step [600/600], Loss: 0.0158 Epoch [11/64], Step [100/600], Loss: 0.0307 Epoch [11/64], Step [200/600], Loss: 0.0188 Epoch [11/64], Step [300/600], Loss: 0.0005 Epoch [11/64], Step [400/600], Loss: 0.0089 Epoch [11/64], Step [500/600], Loss: 0.0061 Epoch [11/64], Step [600/600], Loss: 0.0020 Epoch [12/64], Step [100/600], Loss: 0.0037 Epoch [12/64], Step [200/600], Loss: 0.0023 Epoch [12/64], Step [300/600], Loss: 0.0030 Epoch [12/64], Step [400/600], Loss: 0.0015 Epoch [12/64], Step [500/600], Loss: 0.0328 Epoch [12/64], Step [600/600], Loss: 0.0093 Epoch [13/64], Step [100/600], Loss: 0.0027 Epoch [13/64], Step [200/600], Loss: 0.0068 Epoch [13/64], Step [300/600], Loss: 0.0017 Epoch [13/64], Step [400/600], Loss: 0.0010 Epoch [13/64], Step [500/600], Loss: 0.0074 Epoch [13/64], Step [600/600], Loss: 0.0070 Epoch [14/64], Step [100/600], Loss: 0.0361 Epoch [14/64], Step [200/600], Loss: 0.0006 Epoch [14/64], Step [300/600], Loss: 0.0019 Epoch [14/64], Step [400/600], Loss: 0.0047 Epoch [14/64], Step [500/600], Loss: 0.0025 Epoch [14/64], Step [600/600], Loss: 0.0007 Epoch [15/64], Step [100/600], Loss: 0.0014 Epoch [15/64], Step [200/600], Loss: 0.0034 Epoch [15/64], Step [300/600], Loss: 0.0063 Epoch [15/64], Step [400/600], Loss: 0.0091 Epoch [15/64], Step [500/600], Loss: 0.0053 Epoch [15/64], Step [600/600], Loss: 0.0466 Epoch [16/64], Step [100/600], Loss: 0.0005 Epoch [16/64], Step [200/600], Loss: 0.0063 Epoch [16/64], Step [300/600], Loss: 0.0109 Epoch [16/64], Step [400/600], Loss: 0.0013 Epoch [16/64], Step [500/600], Loss: 0.0217 Epoch [16/64], Step [600/600], Loss: 0.0002 Epoch [17/64], Step [100/600], Loss: 0.0048 Epoch [17/64], Step [200/600], Loss: 0.0010 Epoch [17/64], Step [300/600], Loss: 0.0040 Epoch [17/64], Step [400/600], Loss: 0.0055 Epoch [17/64], Step [500/600], Loss: 0.0008 Epoch [17/64], Step [600/600], Loss: 0.0020 Epoch [18/64], Step [100/600], Loss: 0.0002 Epoch [18/64], Step [200/600], Loss: 0.0042 Epoch [18/64], Step [300/600], Loss: 0.0030 Epoch [18/64], Step [400/600], Loss: 0.0005 Epoch [18/64], Step [500/600], Loss: 0.0010 Epoch [18/64], Step [600/600], Loss: 0.0037 Epoch [19/64], Step [100/600], Loss: 0.0001 Epoch [19/64], Step [200/600], Loss: 0.0033 Epoch [19/64], Step [300/600], Loss: 0.0038 Epoch [19/64], Step [400/600], Loss: 0.0028 Epoch [19/64], Step [500/600], Loss: 0.0049 Epoch [19/64], Step [600/600], Loss: 0.0031 Epoch [20/64], Step [100/600], Loss: 0.0007 Epoch [20/64], Step [200/600], Loss: 0.0011 Epoch [20/64], Step [300/600], Loss: 0.0003 Epoch [20/64], Step [400/600], Loss: 0.0004 Epoch [20/64], Step [500/600], Loss: 0.0005 Epoch [20/64], Step [600/600], Loss: 0.0008 Epoch [21/64], Step [100/600], Loss: 0.0002 Epoch [21/64], Step [200/600], Loss: 0.0010 Epoch [21/64], Step [300/600], Loss: 0.0002 Epoch [21/64], Step [400/600], Loss: 0.0007 Epoch [21/64], Step [500/600], Loss: 0.0048 Epoch [21/64], Step [600/600], Loss: 0.0016 Epoch [22/64], Step [100/600], Loss: 0.0024 Epoch [22/64], Step [200/600], Loss: 0.0006 Epoch [22/64], Step [300/600], Loss: 0.0002 Epoch [22/64], Step [400/600], Loss: 0.0012 Epoch [22/64], Step [500/600], Loss: 0.0190 Epoch [22/64], Step [600/600], Loss: 0.0014 Epoch [23/64], Step [100/600], Loss: 0.0002 Epoch [23/64], Step [200/600], Loss: 0.0203 Epoch [23/64], Step [300/600], Loss: 0.0009 Epoch [23/64], Step [400/600], Loss: 0.0142 Epoch [23/64], Step [500/600], Loss: 0.0008 Epoch [23/64], Step [600/600], Loss: 0.0005 Epoch [24/64], Step [100/600], Loss: 0.0008 Epoch [24/64], Step [200/600], Loss: 0.0004 Epoch [24/64], Step [300/600], Loss: 0.0007 Epoch [24/64], Step [400/600], Loss: 0.0184 Epoch [24/64], Step [500/600], Loss: 0.0014 Epoch [24/64], Step [600/600], Loss: 0.0013 Epoch [25/64], Step [100/600], Loss: 0.0002 Epoch [25/64], Step [200/600], Loss: 0.0000 Epoch [25/64], Step [300/600], Loss: 0.0002 Epoch [25/64], Step [400/600], Loss: 0.0009 Epoch [25/64], Step [500/600], Loss: 0.0002 Epoch [25/64], Step [600/600], Loss: 0.0003 Epoch [26/64], Step [100/600], Loss: 0.0005 Epoch [26/64], Step [200/600], Loss: 0.0005 Epoch [26/64], Step [300/600], Loss: 0.0000 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0001 Epoch [26/64], Step [600/600], Loss: 0.0001 Epoch [27/64], Step [100/600], Loss: 0.0003 Epoch [27/64], Step [200/600], Loss: 0.0005 Epoch [27/64], Step [300/600], Loss: 0.0004 Epoch [27/64], Step [400/600], Loss: 0.0089 Epoch [27/64], Step [500/600], Loss: 0.0006 Epoch [27/64], Step [600/600], Loss: 0.0382 Epoch [28/64], Step [100/600], Loss: 0.0004 Epoch [28/64], Step [200/600], Loss: 0.0021 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0141 Epoch [28/64], Step [500/600], Loss: 0.0015 Epoch [28/64], Step [600/600], Loss: 0.0007 Epoch [29/64], Step [100/600], Loss: 0.0004 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0006 Epoch [29/64], Step [400/600], Loss: 0.0010 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0004 Epoch [30/64], Step [300/600], Loss: 0.0004 Epoch [30/64], Step [400/600], Loss: 0.0001 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0009 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0002 Epoch [32/64], Step [100/600], Loss: 0.0006 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0000 Epoch [32/64], Step [400/600], Loss: 0.0002 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0023 Epoch [33/64], Step [100/600], Loss: 0.0291 Epoch [33/64], Step [200/600], Loss: 0.0007 Epoch [33/64], Step [300/600], Loss: 0.0046 Epoch [33/64], Step [400/600], Loss: 0.0116 Epoch [33/64], Step [500/600], Loss: 0.0099 Epoch [33/64], Step [600/600], Loss: 0.0009 Epoch [34/64], Step [100/600], Loss: 0.0016 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0003 Epoch [34/64], Step [400/600], Loss: 0.0008 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0002 Epoch [35/64], Step [200/600], Loss: 0.0001 Epoch [35/64], Step [300/600], Loss: 0.0023 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0002 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0002 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0003 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0000 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0000 Epoch [40/64], Step [100/600], Loss: 0.0000 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0002 Epoch [43/64], Step [200/600], Loss: 0.0223 Epoch [43/64], Step [300/600], Loss: 0.0004 Epoch [43/64], Step [400/600], Loss: 0.0003 Epoch [43/64], Step [500/600], Loss: 0.0004 Epoch [43/64], Step [600/600], Loss: 0.0016 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0003 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0002 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0004 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0002 Epoch [45/64], Step [500/600], Loss: 0.0010 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0002 Epoch [46/64], Step [400/600], Loss: 0.0003 Epoch [46/64], Step [500/600], Loss: 0.0003 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0002 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0002 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0002 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0002 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0002 Epoch [53/64], Step [100/600], Loss: 0.0377 Epoch [53/64], Step [200/600], Loss: 0.0003 Epoch [53/64], Step [300/600], Loss: 0.0002 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0192 Epoch [53/64], Step [600/600], Loss: 0.0004 Epoch [54/64], Step [100/600], Loss: 0.0025 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0011 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0061 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0002 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0002 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0001 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0001 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0002 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0004 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0001 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 472.296 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins16709418709348828708.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS