Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96861 queued and waiting for resources srun: job 96861 has been allocated resources Running benchmark on hydro04 Epoch [1/64], Step [100/600], Loss: 0.2271 Epoch [1/64], Step [200/600], Loss: 0.1237 Epoch [1/64], Step [300/600], Loss: 0.2076 Epoch [1/64], Step [400/600], Loss: 0.2482 Epoch [1/64], Step [500/600], Loss: 0.0404 Epoch [1/64], Step [600/600], Loss: 0.0722 Epoch [2/64], Step [100/600], Loss: 0.1079 Epoch [2/64], Step [200/600], Loss: 0.0956 Epoch [2/64], Step [300/600], Loss: 0.0490 Epoch [2/64], Step [400/600], Loss: 0.0693 Epoch [2/64], Step [500/600], Loss: 0.0496 Epoch [2/64], Step [600/600], Loss: 0.0874 Epoch [3/64], Step [100/600], Loss: 0.0190 Epoch [3/64], Step [200/600], Loss: 0.0949 Epoch [3/64], Step [300/600], Loss: 0.0390 Epoch [3/64], Step [400/600], Loss: 0.0236 Epoch [3/64], Step [500/600], Loss: 0.0320 Epoch [3/64], Step [600/600], Loss: 0.0145 Epoch [4/64], Step [100/600], Loss: 0.0152 Epoch [4/64], Step [200/600], Loss: 0.0252 Epoch [4/64], Step [300/600], Loss: 0.0961 Epoch [4/64], Step [400/600], Loss: 0.0716 Epoch [4/64], Step [500/600], Loss: 0.0150 Epoch [4/64], Step [600/600], Loss: 0.0146 Epoch [5/64], Step [100/600], Loss: 0.0425 Epoch [5/64], Step [200/600], Loss: 0.0162 Epoch [5/64], Step [300/600], Loss: 0.0239 Epoch [5/64], Step [400/600], Loss: 0.0220 Epoch [5/64], Step [500/600], Loss: 0.0142 Epoch [5/64], Step [600/600], Loss: 0.0057 Epoch [6/64], Step [100/600], Loss: 0.0118 Epoch [6/64], Step [200/600], Loss: 0.0162 Epoch [6/64], Step [300/600], Loss: 0.0083 Epoch [6/64], Step [400/600], Loss: 0.0434 Epoch [6/64], Step [500/600], Loss: 0.0130 Epoch [6/64], Step [600/600], Loss: 0.0193 Epoch [7/64], Step [100/600], Loss: 0.0028 Epoch [7/64], Step [200/600], Loss: 0.0094 Epoch [7/64], Step [300/600], Loss: 0.0115 Epoch [7/64], Step [400/600], Loss: 0.0349 Epoch [7/64], Step [500/600], Loss: 0.0014 Epoch [7/64], Step [600/600], Loss: 0.0083 Epoch [8/64], Step [100/600], Loss: 0.0157 Epoch [8/64], Step [200/600], Loss: 0.0140 Epoch [8/64], Step [300/600], Loss: 0.0426 Epoch [8/64], Step [400/600], Loss: 0.0071 Epoch [8/64], Step [500/600], Loss: 0.0028 Epoch [8/64], Step [600/600], Loss: 0.0179 Epoch [9/64], Step [100/600], Loss: 0.0469 Epoch [9/64], Step [200/600], Loss: 0.0156 Epoch [9/64], Step [300/600], Loss: 0.0183 Epoch [9/64], Step [400/600], Loss: 0.0050 Epoch [9/64], Step [500/600], Loss: 0.0200 Epoch [9/64], Step [600/600], Loss: 0.0065 Epoch [10/64], Step [100/600], Loss: 0.0366 Epoch [10/64], Step [200/600], Loss: 0.0216 Epoch [10/64], Step [300/600], Loss: 0.0509 Epoch [10/64], Step [400/600], Loss: 0.0033 Epoch [10/64], Step [500/600], Loss: 0.0134 Epoch [10/64], Step [600/600], Loss: 0.0060 Epoch [11/64], Step [100/600], Loss: 0.0366 Epoch [11/64], Step [200/600], Loss: 0.0032 Epoch [11/64], Step [300/600], Loss: 0.0139 Epoch [11/64], Step [400/600], Loss: 0.0149 Epoch [11/64], Step [500/600], Loss: 0.0016 Epoch [11/64], Step [600/600], Loss: 0.0412 Epoch [12/64], Step [100/600], Loss: 0.0059 Epoch [12/64], Step [200/600], Loss: 0.0019 Epoch [12/64], Step [300/600], Loss: 0.0049 Epoch [12/64], Step [400/600], Loss: 0.0144 Epoch [12/64], Step [500/600], Loss: 0.0034 Epoch [12/64], Step [600/600], Loss: 0.0122 Epoch [13/64], Step [100/600], Loss: 0.0036 Epoch [13/64], Step [200/600], Loss: 0.0132 Epoch [13/64], Step [300/600], Loss: 0.0051 Epoch [13/64], Step [400/600], Loss: 0.0004 Epoch [13/64], Step [500/600], Loss: 0.0178 Epoch [13/64], Step [600/600], Loss: 0.0014 Epoch [14/64], Step [100/600], Loss: 0.0003 Epoch [14/64], Step [200/600], Loss: 0.0083 Epoch [14/64], Step [300/600], Loss: 0.0021 Epoch [14/64], Step [400/600], Loss: 0.0012 Epoch [14/64], Step [500/600], Loss: 0.0013 Epoch [14/64], Step [600/600], Loss: 0.0022 Epoch [15/64], Step [100/600], Loss: 0.0050 Epoch [15/64], Step [200/600], Loss: 0.0009 Epoch [15/64], Step [300/600], Loss: 0.0079 Epoch [15/64], Step [400/600], Loss: 0.0023 Epoch [15/64], Step [500/600], Loss: 0.0443 Epoch [15/64], Step [600/600], Loss: 0.0026 Epoch [16/64], Step [100/600], Loss: 0.0009 Epoch [16/64], Step [200/600], Loss: 0.0110 Epoch [16/64], Step [300/600], Loss: 0.0015 Epoch [16/64], Step [400/600], Loss: 0.0029 Epoch [16/64], Step [500/600], Loss: 0.0070 Epoch [16/64], Step [600/600], Loss: 0.0046 Epoch [17/64], Step [100/600], Loss: 0.0014 Epoch [17/64], Step [200/600], Loss: 0.0005 Epoch [17/64], Step [300/600], Loss: 0.0004 Epoch [17/64], Step [400/600], Loss: 0.0068 Epoch [17/64], Step [500/600], Loss: 0.0319 Epoch [17/64], Step [600/600], Loss: 0.0004 Epoch [18/64], Step [100/600], Loss: 0.0035 Epoch [18/64], Step [200/600], Loss: 0.0074 Epoch [18/64], Step [300/600], Loss: 0.0029 Epoch [18/64], Step [400/600], Loss: 0.0039 Epoch [18/64], Step [500/600], Loss: 0.0005 Epoch [18/64], Step [600/600], Loss: 0.0086 Epoch [19/64], Step [100/600], Loss: 0.0009 Epoch [19/64], Step [200/600], Loss: 0.0003 Epoch [19/64], Step [300/600], Loss: 0.0022 Epoch [19/64], Step [400/600], Loss: 0.0026 Epoch [19/64], Step [500/600], Loss: 0.0004 Epoch [19/64], Step [600/600], Loss: 0.0109 Epoch [20/64], Step [100/600], Loss: 0.0009 Epoch [20/64], Step [200/600], Loss: 0.0003 Epoch [20/64], Step [300/600], Loss: 0.0001 Epoch [20/64], Step [400/600], Loss: 0.0005 Epoch [20/64], Step [500/600], Loss: 0.0024 Epoch [20/64], Step [600/600], Loss: 0.0023 Epoch [21/64], Step [100/600], Loss: 0.0061 Epoch [21/64], Step [200/600], Loss: 0.0031 Epoch [21/64], Step [300/600], Loss: 0.0018 Epoch [21/64], Step [400/600], Loss: 0.0016 Epoch [21/64], Step [500/600], Loss: 0.0040 Epoch [21/64], Step [600/600], Loss: 0.0207 Epoch [22/64], Step [100/600], Loss: 0.0004 Epoch [22/64], Step [200/600], Loss: 0.0002 Epoch [22/64], Step [300/600], Loss: 0.0025 Epoch [22/64], Step [400/600], Loss: 0.0025 Epoch [22/64], Step [500/600], Loss: 0.0101 Epoch [22/64], Step [600/600], Loss: 0.0000 Epoch [23/64], Step [100/600], Loss: 0.0005 Epoch [23/64], Step [200/600], Loss: 0.0016 Epoch [23/64], Step [300/600], Loss: 0.0007 Epoch [23/64], Step [400/600], Loss: 0.0030 Epoch [23/64], Step [500/600], Loss: 0.0008 Epoch [23/64], Step [600/600], Loss: 0.0004 Epoch [24/64], Step [100/600], Loss: 0.0125 Epoch [24/64], Step [200/600], Loss: 0.0035 Epoch [24/64], Step [300/600], Loss: 0.0235 Epoch [24/64], Step [400/600], Loss: 0.0026 Epoch [24/64], Step [500/600], Loss: 0.0008 Epoch [24/64], Step [600/600], Loss: 0.0004 Epoch [25/64], Step [100/600], Loss: 0.0037 Epoch [25/64], Step [200/600], Loss: 0.0014 Epoch [25/64], Step [300/600], Loss: 0.0001 Epoch [25/64], Step [400/600], Loss: 0.0071 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0010 Epoch [26/64], Step [100/600], Loss: 0.0294 Epoch [26/64], Step [200/600], Loss: 0.0007 Epoch [26/64], Step [300/600], Loss: 0.0011 Epoch [26/64], Step [400/600], Loss: 0.0011 Epoch [26/64], Step [500/600], Loss: 0.0005 Epoch [26/64], Step [600/600], Loss: 0.0001 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0002 Epoch [27/64], Step [300/600], Loss: 0.0005 Epoch [27/64], Step [400/600], Loss: 0.0007 Epoch [27/64], Step [500/600], Loss: 0.0003 Epoch [27/64], Step [600/600], Loss: 0.0001 Epoch [28/64], Step [100/600], Loss: 0.0004 Epoch [28/64], Step [200/600], Loss: 0.0003 Epoch [28/64], Step [300/600], Loss: 0.0004 Epoch [28/64], Step [400/600], Loss: 0.0003 Epoch [28/64], Step [500/600], Loss: 0.0006 Epoch [28/64], Step [600/600], Loss: 0.0003 Epoch [29/64], Step [100/600], Loss: 0.0000 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0000 Epoch [29/64], Step [400/600], Loss: 0.0002 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0000 Epoch [30/64], Step [200/600], Loss: 0.0010 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0038 Epoch [31/64], Step [100/600], Loss: 0.0143 Epoch [31/64], Step [200/600], Loss: 0.0072 Epoch [31/64], Step [300/600], Loss: 0.0026 Epoch [31/64], Step [400/600], Loss: 0.0060 Epoch [31/64], Step [500/600], Loss: 0.0002 Epoch [31/64], Step [600/600], Loss: 0.0025 Epoch [32/64], Step [100/600], Loss: 0.0045 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0003 Epoch [32/64], Step [400/600], Loss: 0.0004 Epoch [32/64], Step [500/600], Loss: 0.0002 Epoch [32/64], Step [600/600], Loss: 0.0002 Epoch [33/64], Step [100/600], Loss: 0.0002 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0000 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0006 Epoch [34/64], Step [100/600], Loss: 0.0003 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0006 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0005 Epoch [35/64], Step [100/600], Loss: 0.0002 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0002 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0004 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0004 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0005 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0002 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0002 Epoch [37/64], Step [500/600], Loss: 0.0010 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0002 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0020 Epoch [39/64], Step [100/600], Loss: 0.0006 Epoch [39/64], Step [200/600], Loss: 0.0064 Epoch [39/64], Step [300/600], Loss: 0.0235 Epoch [39/64], Step [400/600], Loss: 0.0002 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0004 Epoch [40/64], Step [200/600], Loss: 0.0027 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0010 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0003 Epoch [41/64], Step [200/600], Loss: 0.0003 Epoch [41/64], Step [300/600], Loss: 0.0003 Epoch [41/64], Step [400/600], Loss: 0.0002 Epoch [41/64], Step [500/600], Loss: 0.0004 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0002 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0002 Epoch [42/64], Step [600/600], Loss: 0.0002 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0002 Epoch [43/64], Step [300/600], Loss: 0.0007 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0002 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0003 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0003 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0002 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0001 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0007 Epoch [49/64], Step [200/600], Loss: 0.0018 Epoch [49/64], Step [300/600], Loss: 0.0154 Epoch [49/64], Step [400/600], Loss: 0.0096 Epoch [49/64], Step [500/600], Loss: 0.0118 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0008 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0002 Epoch [50/64], Step [500/600], Loss: 0.0004 Epoch [50/64], Step [600/600], Loss: 0.0005 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0003 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0002 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0002 Epoch [53/64], Step [600/600], Loss: 0.0002 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0003 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0501 Epoch [60/64], Step [100/600], Loss: 0.0008 Epoch [60/64], Step [200/600], Loss: 0.0002 Epoch [60/64], Step [300/600], Loss: 0.0054 Epoch [60/64], Step [400/600], Loss: 0.0004 Epoch [60/64], Step [500/600], Loss: 0.0013 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0009 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0003 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0003 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 363.656 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins16881522386808429256.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS