Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96906 queued and waiting for resources srun: job 96906 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2783 Epoch [1/64], Step [200/600], Loss: 0.2059 Epoch [1/64], Step [300/600], Loss: 0.0938 Epoch [1/64], Step [400/600], Loss: 0.0502 Epoch [1/64], Step [500/600], Loss: 0.0574 Epoch [1/64], Step [600/600], Loss: 0.0190 Epoch [2/64], Step [100/600], Loss: 0.0895 Epoch [2/64], Step [200/600], Loss: 0.0227 Epoch [2/64], Step [300/600], Loss: 0.0809 Epoch [2/64], Step [400/600], Loss: 0.1240 Epoch [2/64], Step [500/600], Loss: 0.0286 Epoch [2/64], Step [600/600], Loss: 0.0266 Epoch [3/64], Step [100/600], Loss: 0.0833 Epoch [3/64], Step [200/600], Loss: 0.0375 Epoch [3/64], Step [300/600], Loss: 0.0239 Epoch [3/64], Step [400/600], Loss: 0.0812 Epoch [3/64], Step [500/600], Loss: 0.0255 Epoch [3/64], Step [600/600], Loss: 0.0395 Epoch [4/64], Step [100/600], Loss: 0.0353 Epoch [4/64], Step [200/600], Loss: 0.0623 Epoch [4/64], Step [300/600], Loss: 0.0623 Epoch [4/64], Step [400/600], Loss: 0.0180 Epoch [4/64], Step [500/600], Loss: 0.0070 Epoch [4/64], Step [600/600], Loss: 0.1195 Epoch [5/64], Step [100/600], Loss: 0.0333 Epoch [5/64], Step [200/600], Loss: 0.0161 Epoch [5/64], Step [300/600], Loss: 0.0552 Epoch [5/64], Step [400/600], Loss: 0.0125 Epoch [5/64], Step [500/600], Loss: 0.0106 Epoch [5/64], Step [600/600], Loss: 0.0216 Epoch [6/64], Step [100/600], Loss: 0.0137 Epoch [6/64], Step [200/600], Loss: 0.0128 Epoch [6/64], Step [300/600], Loss: 0.0128 Epoch [6/64], Step [400/600], Loss: 0.0047 Epoch [6/64], Step [500/600], Loss: 0.0920 Epoch [6/64], Step [600/600], Loss: 0.0292 Epoch [7/64], Step [100/600], Loss: 0.0060 Epoch [7/64], Step [200/600], Loss: 0.0466 Epoch [7/64], Step [300/600], Loss: 0.0273 Epoch [7/64], Step [400/600], Loss: 0.0699 Epoch [7/64], Step [500/600], Loss: 0.0529 Epoch [7/64], Step [600/600], Loss: 0.0225 Epoch [8/64], Step [100/600], Loss: 0.0134 Epoch [8/64], Step [200/600], Loss: 0.0073 Epoch [8/64], Step [300/600], Loss: 0.0112 Epoch [8/64], Step [400/600], Loss: 0.0029 Epoch [8/64], Step [500/600], Loss: 0.0332 Epoch [8/64], Step [600/600], Loss: 0.0114 Epoch [9/64], Step [100/600], Loss: 0.0227 Epoch [9/64], Step [200/600], Loss: 0.0076 Epoch [9/64], Step [300/600], Loss: 0.0027 Epoch [9/64], Step [400/600], Loss: 0.0023 Epoch [9/64], Step [500/600], Loss: 0.0013 Epoch [9/64], Step [600/600], Loss: 0.0017 Epoch [10/64], Step [100/600], Loss: 0.0068 Epoch [10/64], Step [200/600], Loss: 0.0106 Epoch [10/64], Step [300/600], Loss: 0.0266 Epoch [10/64], Step [400/600], Loss: 0.0049 Epoch [10/64], Step [500/600], Loss: 0.0180 Epoch [10/64], Step [600/600], Loss: 0.0013 Epoch [11/64], Step [100/600], Loss: 0.0024 Epoch [11/64], Step [200/600], Loss: 0.0017 Epoch [11/64], Step [300/600], Loss: 0.0049 Epoch [11/64], Step [400/600], Loss: 0.0008 Epoch [11/64], Step [500/600], Loss: 0.0019 Epoch [11/64], Step [600/600], Loss: 0.0052 Epoch [12/64], Step [100/600], Loss: 0.0072 Epoch [12/64], Step [200/600], Loss: 0.0117 Epoch [12/64], Step [300/600], Loss: 0.0252 Epoch [12/64], Step [400/600], Loss: 0.0060 Epoch [12/64], Step [500/600], Loss: 0.0027 Epoch [12/64], Step [600/600], Loss: 0.0072 Epoch [13/64], Step [100/600], Loss: 0.0032 Epoch [13/64], Step [200/600], Loss: 0.0028 Epoch [13/64], Step [300/600], Loss: 0.0026 Epoch [13/64], Step [400/600], Loss: 0.0087 Epoch [13/64], Step [500/600], Loss: 0.0042 Epoch [13/64], Step [600/600], Loss: 0.0124 Epoch [14/64], Step [100/600], Loss: 0.0028 Epoch [14/64], Step [200/600], Loss: 0.0324 Epoch [14/64], Step [300/600], Loss: 0.0820 Epoch [14/64], Step [400/600], Loss: 0.0040 Epoch [14/64], Step [500/600], Loss: 0.0041 Epoch [14/64], Step [600/600], Loss: 0.0033 Epoch [15/64], Step [100/600], Loss: 0.0071 Epoch [15/64], Step [200/600], Loss: 0.0036 Epoch [15/64], Step [300/600], Loss: 0.0108 Epoch [15/64], Step [400/600], Loss: 0.0086 Epoch [15/64], Step [500/600], Loss: 0.0023 Epoch [15/64], Step [600/600], Loss: 0.0011 Epoch [16/64], Step [100/600], Loss: 0.0072 Epoch [16/64], Step [200/600], Loss: 0.0040 Epoch [16/64], Step [300/600], Loss: 0.0019 Epoch [16/64], Step [400/600], Loss: 0.0034 Epoch [16/64], Step [500/600], Loss: 0.0007 Epoch [16/64], Step [600/600], Loss: 0.0258 Epoch [17/64], Step [100/600], Loss: 0.0011 Epoch [17/64], Step [200/600], Loss: 0.0084 Epoch [17/64], Step [300/600], Loss: 0.0067 Epoch [17/64], Step [400/600], Loss: 0.0097 Epoch [17/64], Step [500/600], Loss: 0.0055 Epoch [17/64], Step [600/600], Loss: 0.0020 Epoch [18/64], Step [100/600], Loss: 0.0020 Epoch [18/64], Step [200/600], Loss: 0.0006 Epoch [18/64], Step [300/600], Loss: 0.0041 Epoch [18/64], Step [400/600], Loss: 0.0015 Epoch [18/64], Step [500/600], Loss: 0.0012 Epoch [18/64], Step [600/600], Loss: 0.0066 Epoch [19/64], Step [100/600], Loss: 0.0004 Epoch [19/64], Step [200/600], Loss: 0.0101 Epoch [19/64], Step [300/600], Loss: 0.0006 Epoch [19/64], Step [400/600], Loss: 0.0026 Epoch [19/64], Step [500/600], Loss: 0.0053 Epoch [19/64], Step [600/600], Loss: 0.0008 Epoch [20/64], Step [100/600], Loss: 0.0068 Epoch [20/64], Step [200/600], Loss: 0.0013 Epoch [20/64], Step [300/600], Loss: 0.0070 Epoch [20/64], Step [400/600], Loss: 0.0048 Epoch [20/64], Step [500/600], Loss: 0.0005 Epoch [20/64], Step [600/600], Loss: 0.0135 Epoch [21/64], Step [100/600], Loss: 0.0022 Epoch [21/64], Step [200/600], Loss: 0.0004 Epoch [21/64], Step [300/600], Loss: 0.0008 Epoch [21/64], Step [400/600], Loss: 0.0029 Epoch [21/64], Step [500/600], Loss: 0.0016 Epoch [21/64], Step [600/600], Loss: 0.0018 Epoch [22/64], Step [100/600], Loss: 0.0002 Epoch [22/64], Step [200/600], Loss: 0.0029 Epoch [22/64], Step [300/600], Loss: 0.0004 Epoch [22/64], Step [400/600], Loss: 0.0004 Epoch [22/64], Step [500/600], Loss: 0.0006 Epoch [22/64], Step [600/600], Loss: 0.0003 Epoch [23/64], Step [100/600], Loss: 0.0018 Epoch [23/64], Step [200/600], Loss: 0.0003 Epoch [23/64], Step [300/600], Loss: 0.0010 Epoch [23/64], Step [400/600], Loss: 0.0009 Epoch [23/64], Step [500/600], Loss: 0.0010 Epoch [23/64], Step [600/600], Loss: 0.0071 Epoch [24/64], Step [100/600], Loss: 0.0007 Epoch [24/64], Step [200/600], Loss: 0.0003 Epoch [24/64], Step [300/600], Loss: 0.0062 Epoch [24/64], Step [400/600], Loss: 0.0064 Epoch [24/64], Step [500/600], Loss: 0.0005 Epoch [24/64], Step [600/600], Loss: 0.0093 Epoch [25/64], Step [100/600], Loss: 0.0039 Epoch [25/64], Step [200/600], Loss: 0.0001 Epoch [25/64], Step [300/600], Loss: 0.0004 Epoch [25/64], Step [400/600], Loss: 0.0006 Epoch [25/64], Step [500/600], Loss: 0.0003 Epoch [25/64], Step [600/600], Loss: 0.0004 Epoch [26/64], Step [100/600], Loss: 0.0002 Epoch [26/64], Step [200/600], Loss: 0.0015 Epoch [26/64], Step [300/600], Loss: 0.0004 Epoch [26/64], Step [400/600], Loss: 0.0008 Epoch [26/64], Step [500/600], Loss: 0.0001 Epoch [26/64], Step [600/600], Loss: 0.0002 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0024 Epoch [27/64], Step [300/600], Loss: 0.0004 Epoch [27/64], Step [400/600], Loss: 0.0016 Epoch [27/64], Step [500/600], Loss: 0.0152 Epoch [27/64], Step [600/600], Loss: 0.0054 Epoch [28/64], Step [100/600], Loss: 0.0120 Epoch [28/64], Step [200/600], Loss: 0.0100 Epoch [28/64], Step [300/600], Loss: 0.0058 Epoch [28/64], Step [400/600], Loss: 0.0084 Epoch [28/64], Step [500/600], Loss: 0.0029 Epoch [28/64], Step [600/600], Loss: 0.0023 Epoch [29/64], Step [100/600], Loss: 0.0007 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0024 Epoch [29/64], Step [600/600], Loss: 0.0006 Epoch [30/64], Step [100/600], Loss: 0.0014 Epoch [30/64], Step [200/600], Loss: 0.0000 Epoch [30/64], Step [300/600], Loss: 0.0004 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0003 Epoch [31/64], Step [100/600], Loss: 0.0009 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0004 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0007 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0004 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0002 Epoch [33/64], Step [100/600], Loss: 0.0002 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0002 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0002 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0005 Epoch [34/64], Step [600/600], Loss: 0.0009 Epoch [35/64], Step [100/600], Loss: 0.0027 Epoch [35/64], Step [200/600], Loss: 0.0138 Epoch [35/64], Step [300/600], Loss: 0.0039 Epoch [35/64], Step [400/600], Loss: 0.0021 Epoch [35/64], Step [500/600], Loss: 0.0020 Epoch [35/64], Step [600/600], Loss: 0.0006 Epoch [36/64], Step [100/600], Loss: 0.0005 Epoch [36/64], Step [200/600], Loss: 0.0006 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0003 Epoch [37/64], Step [100/600], Loss: 0.0003 Epoch [37/64], Step [200/600], Loss: 0.0019 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0002 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0002 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0003 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0001 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0003 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0005 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0000 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0004 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0002 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0002 Epoch [44/64], Step [100/600], Loss: 0.0040 Epoch [44/64], Step [200/600], Loss: 0.0512 Epoch [44/64], Step [300/600], Loss: 0.0005 Epoch [44/64], Step [400/600], Loss: 0.0009 Epoch [44/64], Step [500/600], Loss: 0.0007 Epoch [44/64], Step [600/600], Loss: 0.0079 Epoch [45/64], Step [100/600], Loss: 0.0003 Epoch [45/64], Step [200/600], Loss: 0.0053 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0003 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0037 Epoch [46/64], Step [300/600], Loss: 0.0006 Epoch [46/64], Step [400/600], Loss: 0.0023 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0002 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0003 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0001 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0002 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0718 Epoch [55/64], Step [100/600], Loss: 0.0022 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0201 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0004 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0019 Epoch [56/64], Step [400/600], Loss: 0.0002 Epoch [56/64], Step [500/600], Loss: 0.0002 Epoch [56/64], Step [600/600], Loss: 0.0001 Epoch [57/64], Step [100/600], Loss: 0.0002 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0001 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0003 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0005 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0005 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0004 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0002 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0001 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0003 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0001 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.1249 Pytorch test completed in 388.623 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins852377361759815865.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS