Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98648 queued and waiting for resources srun: job 98648 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.1521 Epoch [1/64], Step [200/600], Loss: 0.2465 Epoch [1/64], Step [300/600], Loss: 0.1813 Epoch [1/64], Step [400/600], Loss: 0.0574 Epoch [1/64], Step [500/600], Loss: 0.0484 Epoch [1/64], Step [600/600], Loss: 0.0330 Epoch [2/64], Step [100/600], Loss: 0.0466 Epoch [2/64], Step [200/600], Loss: 0.0238 Epoch [2/64], Step [300/600], Loss: 0.0942 Epoch [2/64], Step [400/600], Loss: 0.0477 Epoch [2/64], Step [500/600], Loss: 0.0209 Epoch [2/64], Step [600/600], Loss: 0.0511 Epoch [3/64], Step [100/600], Loss: 0.0500 Epoch [3/64], Step [200/600], Loss: 0.0271 Epoch [3/64], Step [300/600], Loss: 0.0445 Epoch [3/64], Step [400/600], Loss: 0.0358 Epoch [3/64], Step [500/600], Loss: 0.0348 Epoch [3/64], Step [600/600], Loss: 0.0866 Epoch [4/64], Step [100/600], Loss: 0.0949 Epoch [4/64], Step [200/600], Loss: 0.0354 Epoch [4/64], Step [300/600], Loss: 0.0109 Epoch [4/64], Step [400/600], Loss: 0.0048 Epoch [4/64], Step [500/600], Loss: 0.0163 Epoch [4/64], Step [600/600], Loss: 0.0717 Epoch [5/64], Step [100/600], Loss: 0.0212 Epoch [5/64], Step [200/600], Loss: 0.0396 Epoch [5/64], Step [300/600], Loss: 0.1094 Epoch [5/64], Step [400/600], Loss: 0.0216 Epoch [5/64], Step [500/600], Loss: 0.0081 Epoch [5/64], Step [600/600], Loss: 0.0162 Epoch [6/64], Step [100/600], Loss: 0.0206 Epoch [6/64], Step [200/600], Loss: 0.0089 Epoch [6/64], Step [300/600], Loss: 0.0040 Epoch [6/64], Step [400/600], Loss: 0.1244 Epoch [6/64], Step [500/600], Loss: 0.0319 Epoch [6/64], Step [600/600], Loss: 0.0292 Epoch [7/64], Step [100/600], Loss: 0.0112 Epoch [7/64], Step [200/600], Loss: 0.0155 Epoch [7/64], Step [300/600], Loss: 0.0082 Epoch [7/64], Step [400/600], Loss: 0.0052 Epoch [7/64], Step [500/600], Loss: 0.0240 Epoch [7/64], Step [600/600], Loss: 0.0430 Epoch [8/64], Step [100/600], Loss: 0.0028 Epoch [8/64], Step [200/600], Loss: 0.0099 Epoch [8/64], Step [300/600], Loss: 0.0290 Epoch [8/64], Step [400/600], Loss: 0.0056 Epoch [8/64], Step [500/600], Loss: 0.0076 Epoch [8/64], Step [600/600], Loss: 0.0039 Epoch [9/64], Step [100/600], Loss: 0.0138 Epoch [9/64], Step [200/600], Loss: 0.0326 Epoch [9/64], Step [300/600], Loss: 0.0019 Epoch [9/64], Step [400/600], Loss: 0.0204 Epoch [9/64], Step [500/600], Loss: 0.0220 Epoch [9/64], Step [600/600], Loss: 0.0022 Epoch [10/64], Step [100/600], Loss: 0.0010 Epoch [10/64], Step [200/600], Loss: 0.0091 Epoch [10/64], Step [300/600], Loss: 0.0084 Epoch [10/64], Step [400/600], Loss: 0.0102 Epoch [10/64], Step [500/600], Loss: 0.0326 Epoch [10/64], Step [600/600], Loss: 0.0145 Epoch [11/64], Step [100/600], Loss: 0.0103 Epoch [11/64], Step [200/600], Loss: 0.0118 Epoch [11/64], Step [300/600], Loss: 0.0012 Epoch [11/64], Step [400/600], Loss: 0.0625 Epoch [11/64], Step [500/600], Loss: 0.0035 Epoch [11/64], Step [600/600], Loss: 0.0053 Epoch [12/64], Step [100/600], Loss: 0.0087 Epoch [12/64], Step [200/600], Loss: 0.0019 Epoch [12/64], Step [300/600], Loss: 0.0057 Epoch [12/64], Step [400/600], Loss: 0.0023 Epoch [12/64], Step [500/600], Loss: 0.0232 Epoch [12/64], Step [600/600], Loss: 0.0008 Epoch [13/64], Step [100/600], Loss: 0.0132 Epoch [13/64], Step [200/600], Loss: 0.0028 Epoch [13/64], Step [300/600], Loss: 0.0029 Epoch [13/64], Step [400/600], Loss: 0.0199 Epoch [13/64], Step [500/600], Loss: 0.0183 Epoch [13/64], Step [600/600], Loss: 0.0030 Epoch [14/64], Step [100/600], Loss: 0.0043 Epoch [14/64], Step [200/600], Loss: 0.0104 Epoch [14/64], Step [300/600], Loss: 0.0059 Epoch [14/64], Step [400/600], Loss: 0.0028 Epoch [14/64], Step [500/600], Loss: 0.0032 Epoch [14/64], Step [600/600], Loss: 0.0053 Epoch [15/64], Step [100/600], Loss: 0.0033 Epoch [15/64], Step [200/600], Loss: 0.0017 Epoch [15/64], Step [300/600], Loss: 0.0039 Epoch [15/64], Step [400/600], Loss: 0.0082 Epoch [15/64], Step [500/600], Loss: 0.0324 Epoch [15/64], Step [600/600], Loss: 0.0012 Epoch [16/64], Step [100/600], Loss: 0.0027 Epoch [16/64], Step [200/600], Loss: 0.0005 Epoch [16/64], Step [300/600], Loss: 0.0006 Epoch [16/64], Step [400/600], Loss: 0.0017 Epoch [16/64], Step [500/600], Loss: 0.0016 Epoch [16/64], Step [600/600], Loss: 0.0049 Epoch [17/64], Step [100/600], Loss: 0.0055 Epoch [17/64], Step [200/600], Loss: 0.0051 Epoch [17/64], Step [300/600], Loss: 0.0004 Epoch [17/64], Step [400/600], Loss: 0.0016 Epoch [17/64], Step [500/600], Loss: 0.0006 Epoch [17/64], Step [600/600], Loss: 0.0055 Epoch [18/64], Step [100/600], Loss: 0.0132 Epoch [18/64], Step [200/600], Loss: 0.0127 Epoch [18/64], Step [300/600], Loss: 0.0010 Epoch [18/64], Step [400/600], Loss: 0.0008 Epoch [18/64], Step [500/600], Loss: 0.0023 Epoch [18/64], Step [600/600], Loss: 0.0029 Epoch [19/64], Step [100/600], Loss: 0.0081 Epoch [19/64], Step [200/600], Loss: 0.0018 Epoch [19/64], Step [300/600], Loss: 0.0024 Epoch [19/64], Step [400/600], Loss: 0.0020 Epoch [19/64], Step [500/600], Loss: 0.0001 Epoch [19/64], Step [600/600], Loss: 0.0005 Epoch [20/64], Step [100/600], Loss: 0.0030 Epoch [20/64], Step [200/600], Loss: 0.0002 Epoch [20/64], Step [300/600], Loss: 0.0015 Epoch [20/64], Step [400/600], Loss: 0.0087 Epoch [20/64], Step [500/600], Loss: 0.0326 Epoch [20/64], Step [600/600], Loss: 0.0019 Epoch [21/64], Step [100/600], Loss: 0.0046 Epoch [21/64], Step [200/600], Loss: 0.0028 Epoch [21/64], Step [300/600], Loss: 0.0007 Epoch [21/64], Step [400/600], Loss: 0.0025 Epoch [21/64], Step [500/600], Loss: 0.0014 Epoch [21/64], Step [600/600], Loss: 0.0003 Epoch [22/64], Step [100/600], Loss: 0.0077 Epoch [22/64], Step [200/600], Loss: 0.0028 Epoch [22/64], Step [300/600], Loss: 0.0001 Epoch [22/64], Step [400/600], Loss: 0.0047 Epoch [22/64], Step [500/600], Loss: 0.0005 Epoch [22/64], Step [600/600], Loss: 0.0067 Epoch [23/64], Step [100/600], Loss: 0.0006 Epoch [23/64], Step [200/600], Loss: 0.0001 Epoch [23/64], Step [300/600], Loss: 0.0005 Epoch [23/64], Step [400/600], Loss: 0.0002 Epoch [23/64], Step [500/600], Loss: 0.0016 Epoch [23/64], Step [600/600], Loss: 0.0006 Epoch [24/64], Step [100/600], Loss: 0.0011 Epoch [24/64], Step [200/600], Loss: 0.0003 Epoch [24/64], Step [300/600], Loss: 0.0001 Epoch [24/64], Step [400/600], Loss: 0.0004 Epoch [24/64], Step [500/600], Loss: 0.0001 Epoch [24/64], Step [600/600], Loss: 0.0001 Epoch [25/64], Step [100/600], Loss: 0.0003 Epoch [25/64], Step [200/600], Loss: 0.0002 Epoch [25/64], Step [300/600], Loss: 0.0002 Epoch [25/64], Step [400/600], Loss: 0.0002 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0007 Epoch [26/64], Step [100/600], Loss: 0.0004 Epoch [26/64], Step [200/600], Loss: 0.0001 Epoch [26/64], Step [300/600], Loss: 0.0074 Epoch [26/64], Step [400/600], Loss: 0.0008 Epoch [26/64], Step [500/600], Loss: 0.0228 Epoch [26/64], Step [600/600], Loss: 0.0009 Epoch [27/64], Step [100/600], Loss: 0.0007 Epoch [27/64], Step [200/600], Loss: 0.0003 Epoch [27/64], Step [300/600], Loss: 0.0021 Epoch [27/64], Step [400/600], Loss: 0.0004 Epoch [27/64], Step [500/600], Loss: 0.0001 Epoch [27/64], Step [600/600], Loss: 0.0015 Epoch [28/64], Step [100/600], Loss: 0.0003 Epoch [28/64], Step [200/600], Loss: 0.0004 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0003 Epoch [28/64], Step [500/600], Loss: 0.0049 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0004 Epoch [29/64], Step [200/600], Loss: 0.0002 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0003 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0004 Epoch [30/64], Step [200/600], Loss: 0.0000 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0003 Epoch [30/64], Step [500/600], Loss: 0.0003 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0002 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0003 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0000 Epoch [32/64], Step [100/600], Loss: 0.0000 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0005 Epoch [32/64], Step [600/600], Loss: 0.0424 Epoch [33/64], Step [100/600], Loss: 0.0022 Epoch [33/64], Step [200/600], Loss: 0.0005 Epoch [33/64], Step [300/600], Loss: 0.0419 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0013 Epoch [33/64], Step [600/600], Loss: 0.0067 Epoch [34/64], Step [100/600], Loss: 0.0003 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0006 Epoch [34/64], Step [400/600], Loss: 0.0011 Epoch [34/64], Step [500/600], Loss: 0.0021 Epoch [34/64], Step [600/600], Loss: 0.0007 Epoch [35/64], Step [100/600], Loss: 0.0003 Epoch [35/64], Step [200/600], Loss: 0.0007 Epoch [35/64], Step [300/600], Loss: 0.0005 Epoch [35/64], Step [400/600], Loss: 0.0018 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0018 Epoch [36/64], Step [100/600], Loss: 0.0004 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0000 Epoch [36/64], Step [500/600], Loss: 0.0003 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0003 Epoch [37/64], Step [400/600], Loss: 0.0006 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0005 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0136 Epoch [38/64], Step [500/600], Loss: 0.0013 Epoch [38/64], Step [600/600], Loss: 0.0009 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0003 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0070 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0003 Epoch [40/64], Step [100/600], Loss: 0.0000 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0017 Epoch [40/64], Step [400/600], Loss: 0.0004 Epoch [40/64], Step [500/600], Loss: 0.0002 Epoch [40/64], Step [600/600], Loss: 0.0000 Epoch [41/64], Step [100/600], Loss: 0.0005 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0002 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0002 Epoch [41/64], Step [600/600], Loss: 0.0045 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0003 Epoch [42/64], Step [500/600], Loss: 0.0032 Epoch [42/64], Step [600/600], Loss: 0.0004 Epoch [43/64], Step [100/600], Loss: 0.0003 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0007 Epoch [43/64], Step [400/600], Loss: 0.0136 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0002 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0007 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0002 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0007 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0002 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0002 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0002 Epoch [49/64], Step [500/600], Loss: 0.0001 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0449 Epoch [54/64], Step [100/600], Loss: 0.0162 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0006 Epoch [54/64], Step [500/600], Loss: 0.0002 Epoch [54/64], Step [600/600], Loss: 0.0022 Epoch [55/64], Step [100/600], Loss: 0.0016 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0004 Epoch [55/64], Step [400/600], Loss: 0.0002 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0003 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0006 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0003 Epoch [57/64], Step [200/600], Loss: 0.0002 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0001 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0001 Epoch [60/64], Step [400/600], Loss: 0.0001 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 374.322 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins2401317435474094915.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS