Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98723 queued and waiting for resources srun: job 98723 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2263 Epoch [1/64], Step [200/600], Loss: 0.1283 Epoch [1/64], Step [300/600], Loss: 0.0616 Epoch [1/64], Step [400/600], Loss: 0.2396 Epoch [1/64], Step [500/600], Loss: 0.0380 Epoch [1/64], Step [600/600], Loss: 0.0510 Epoch [2/64], Step [100/600], Loss: 0.0809 Epoch [2/64], Step [200/600], Loss: 0.0341 Epoch [2/64], Step [300/600], Loss: 0.0318 Epoch [2/64], Step [400/600], Loss: 0.0109 Epoch [2/64], Step [500/600], Loss: 0.0655 Epoch [2/64], Step [600/600], Loss: 0.0780 Epoch [3/64], Step [100/600], Loss: 0.0130 Epoch [3/64], Step [200/600], Loss: 0.0515 Epoch [3/64], Step [300/600], Loss: 0.0119 Epoch [3/64], Step [400/600], Loss: 0.0300 Epoch [3/64], Step [500/600], Loss: 0.0284 Epoch [3/64], Step [600/600], Loss: 0.0253 Epoch [4/64], Step [100/600], Loss: 0.0126 Epoch [4/64], Step [200/600], Loss: 0.2137 Epoch [4/64], Step [300/600], Loss: 0.0178 Epoch [4/64], Step [400/600], Loss: 0.0178 Epoch [4/64], Step [500/600], Loss: 0.0441 Epoch [4/64], Step [600/600], Loss: 0.0239 Epoch [5/64], Step [100/600], Loss: 0.0191 Epoch [5/64], Step [200/600], Loss: 0.0131 Epoch [5/64], Step [300/600], Loss: 0.0229 Epoch [5/64], Step [400/600], Loss: 0.0322 Epoch [5/64], Step [500/600], Loss: 0.0174 Epoch [5/64], Step [600/600], Loss: 0.0135 Epoch [6/64], Step [100/600], Loss: 0.0249 Epoch [6/64], Step [200/600], Loss: 0.0126 Epoch [6/64], Step [300/600], Loss: 0.0155 Epoch [6/64], Step [400/600], Loss: 0.0064 Epoch [6/64], Step [500/600], Loss: 0.0173 Epoch [6/64], Step [600/600], Loss: 0.0266 Epoch [7/64], Step [100/600], Loss: 0.0020 Epoch [7/64], Step [200/600], Loss: 0.0121 Epoch [7/64], Step [300/600], Loss: 0.0057 Epoch [7/64], Step [400/600], Loss: 0.0198 Epoch [7/64], Step [500/600], Loss: 0.0092 Epoch [7/64], Step [600/600], Loss: 0.0058 Epoch [8/64], Step [100/600], Loss: 0.0136 Epoch [8/64], Step [200/600], Loss: 0.0078 Epoch [8/64], Step [300/600], Loss: 0.0034 Epoch [8/64], Step [400/600], Loss: 0.0036 Epoch [8/64], Step [500/600], Loss: 0.0269 Epoch [8/64], Step [600/600], Loss: 0.0182 Epoch [9/64], Step [100/600], Loss: 0.0141 Epoch [9/64], Step [200/600], Loss: 0.0061 Epoch [9/64], Step [300/600], Loss: 0.0293 Epoch [9/64], Step [400/600], Loss: 0.0051 Epoch [9/64], Step [500/600], Loss: 0.0201 Epoch [9/64], Step [600/600], Loss: 0.0015 Epoch [10/64], Step [100/600], Loss: 0.0067 Epoch [10/64], Step [200/600], Loss: 0.0004 Epoch [10/64], Step [300/600], Loss: 0.0016 Epoch [10/64], Step [400/600], Loss: 0.0229 Epoch [10/64], Step [500/600], Loss: 0.0049 Epoch [10/64], Step [600/600], Loss: 0.0058 Epoch [11/64], Step [100/600], Loss: 0.0015 Epoch [11/64], Step [200/600], Loss: 0.0190 Epoch [11/64], Step [300/600], Loss: 0.0065 Epoch [11/64], Step [400/600], Loss: 0.0023 Epoch [11/64], Step [500/600], Loss: 0.0117 Epoch [11/64], Step [600/600], Loss: 0.0015 Epoch [12/64], Step [100/600], Loss: 0.0151 Epoch [12/64], Step [200/600], Loss: 0.0165 Epoch [12/64], Step [300/600], Loss: 0.0018 Epoch [12/64], Step [400/600], Loss: 0.0264 Epoch [12/64], Step [500/600], Loss: 0.0162 Epoch [12/64], Step [600/600], Loss: 0.0040 Epoch [13/64], Step [100/600], Loss: 0.0087 Epoch [13/64], Step [200/600], Loss: 0.0061 Epoch [13/64], Step [300/600], Loss: 0.0256 Epoch [13/64], Step [400/600], Loss: 0.0041 Epoch [13/64], Step [500/600], Loss: 0.0013 Epoch [13/64], Step [600/600], Loss: 0.0061 Epoch [14/64], Step [100/600], Loss: 0.0146 Epoch [14/64], Step [200/600], Loss: 0.0030 Epoch [14/64], Step [300/600], Loss: 0.0043 Epoch [14/64], Step [400/600], Loss: 0.0120 Epoch [14/64], Step [500/600], Loss: 0.0003 Epoch [14/64], Step [600/600], Loss: 0.0151 Epoch [15/64], Step [100/600], Loss: 0.0015 Epoch [15/64], Step [200/600], Loss: 0.0098 Epoch [15/64], Step [300/600], Loss: 0.0032 Epoch [15/64], Step [400/600], Loss: 0.0060 Epoch [15/64], Step [500/600], Loss: 0.0073 Epoch [15/64], Step [600/600], Loss: 0.0036 Epoch [16/64], Step [100/600], Loss: 0.0017 Epoch [16/64], Step [200/600], Loss: 0.0539 Epoch [16/64], Step [300/600], Loss: 0.0008 Epoch [16/64], Step [400/600], Loss: 0.0029 Epoch [16/64], Step [500/600], Loss: 0.0027 Epoch [16/64], Step [600/600], Loss: 0.0003 Epoch [17/64], Step [100/600], Loss: 0.0041 Epoch [17/64], Step [200/600], Loss: 0.0005 Epoch [17/64], Step [300/600], Loss: 0.0040 Epoch [17/64], Step [400/600], Loss: 0.0081 Epoch [17/64], Step [500/600], Loss: 0.0025 Epoch [17/64], Step [600/600], Loss: 0.0151 Epoch [18/64], Step [100/600], Loss: 0.0005 Epoch [18/64], Step [200/600], Loss: 0.0040 Epoch [18/64], Step [300/600], Loss: 0.0037 Epoch [18/64], Step [400/600], Loss: 0.0030 Epoch [18/64], Step [500/600], Loss: 0.0005 Epoch [18/64], Step [600/600], Loss: 0.0318 Epoch [19/64], Step [100/600], Loss: 0.0014 Epoch [19/64], Step [200/600], Loss: 0.0014 Epoch [19/64], Step [300/600], Loss: 0.0005 Epoch [19/64], Step [400/600], Loss: 0.0083 Epoch [19/64], Step [500/600], Loss: 0.0002 Epoch [19/64], Step [600/600], Loss: 0.0011 Epoch [20/64], Step [100/600], Loss: 0.0018 Epoch [20/64], Step [200/600], Loss: 0.0026 Epoch [20/64], Step [300/600], Loss: 0.0033 Epoch [20/64], Step [400/600], Loss: 0.0062 Epoch [20/64], Step [500/600], Loss: 0.0051 Epoch [20/64], Step [600/600], Loss: 0.0017 Epoch [21/64], Step [100/600], Loss: 0.0021 Epoch [21/64], Step [200/600], Loss: 0.0007 Epoch [21/64], Step [300/600], Loss: 0.0113 Epoch [21/64], Step [400/600], Loss: 0.0026 Epoch [21/64], Step [500/600], Loss: 0.0007 Epoch [21/64], Step [600/600], Loss: 0.0236 Epoch [22/64], Step [100/600], Loss: 0.0004 Epoch [22/64], Step [200/600], Loss: 0.0001 Epoch [22/64], Step [300/600], Loss: 0.0001 Epoch [22/64], Step [400/600], Loss: 0.0030 Epoch [22/64], Step [500/600], Loss: 0.0067 Epoch [22/64], Step [600/600], Loss: 0.0001 Epoch [23/64], Step [100/600], Loss: 0.0084 Epoch [23/64], Step [200/600], Loss: 0.0003 Epoch [23/64], Step [300/600], Loss: 0.0006 Epoch [23/64], Step [400/600], Loss: 0.0003 Epoch [23/64], Step [500/600], Loss: 0.0007 Epoch [23/64], Step [600/600], Loss: 0.0007 Epoch [24/64], Step [100/600], Loss: 0.0029 Epoch [24/64], Step [200/600], Loss: 0.0011 Epoch [24/64], Step [300/600], Loss: 0.0002 Epoch [24/64], Step [400/600], Loss: 0.0003 Epoch [24/64], Step [500/600], Loss: 0.0001 Epoch [24/64], Step [600/600], Loss: 0.0009 Epoch [25/64], Step [100/600], Loss: 0.0002 Epoch [25/64], Step [200/600], Loss: 0.0013 Epoch [25/64], Step [300/600], Loss: 0.0001 Epoch [25/64], Step [400/600], Loss: 0.0008 Epoch [25/64], Step [500/600], Loss: 0.0006 Epoch [25/64], Step [600/600], Loss: 0.0003 Epoch [26/64], Step [100/600], Loss: 0.0002 Epoch [26/64], Step [200/600], Loss: 0.0003 Epoch [26/64], Step [300/600], Loss: 0.0001 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0001 Epoch [26/64], Step [600/600], Loss: 0.0002 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0000 Epoch [27/64], Step [300/600], Loss: 0.0002 Epoch [27/64], Step [400/600], Loss: 0.0002 Epoch [27/64], Step [500/600], Loss: 0.0002 Epoch [27/64], Step [600/600], Loss: 0.0009 Epoch [28/64], Step [100/600], Loss: 0.0002 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0003 Epoch [28/64], Step [400/600], Loss: 0.0000 Epoch [28/64], Step [500/600], Loss: 0.0549 Epoch [28/64], Step [600/600], Loss: 0.0004 Epoch [29/64], Step [100/600], Loss: 0.0031 Epoch [29/64], Step [200/600], Loss: 0.0537 Epoch [29/64], Step [300/600], Loss: 0.0064 Epoch [29/64], Step [400/600], Loss: 0.0170 Epoch [29/64], Step [500/600], Loss: 0.0307 Epoch [29/64], Step [600/600], Loss: 0.0028 Epoch [30/64], Step [100/600], Loss: 0.0010 Epoch [30/64], Step [200/600], Loss: 0.0002 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0003 Epoch [30/64], Step [500/600], Loss: 0.0010 Epoch [30/64], Step [600/600], Loss: 0.0013 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0000 Epoch [31/64], Step [500/600], Loss: 0.0004 Epoch [31/64], Step [600/600], Loss: 0.0004 Epoch [32/64], Step [100/600], Loss: 0.0000 Epoch [32/64], Step [200/600], Loss: 0.0000 Epoch [32/64], Step [300/600], Loss: 0.0007 Epoch [32/64], Step [400/600], Loss: 0.0007 Epoch [32/64], Step [500/600], Loss: 0.0005 Epoch [32/64], Step [600/600], Loss: 0.0016 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0004 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0006 Epoch [33/64], Step [600/600], Loss: 0.0006 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0002 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0001 Epoch [35/64], Step [300/600], Loss: 0.0002 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0000 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0884 Epoch [37/64], Step [100/600], Loss: 0.0003 Epoch [37/64], Step [200/600], Loss: 0.0067 Epoch [37/64], Step [300/600], Loss: 0.0101 Epoch [37/64], Step [400/600], Loss: 0.0003 Epoch [37/64], Step [500/600], Loss: 0.0129 Epoch [37/64], Step [600/600], Loss: 0.0015 Epoch [38/64], Step [100/600], Loss: 0.0003 Epoch [38/64], Step [200/600], Loss: 0.0002 Epoch [38/64], Step [300/600], Loss: 0.0003 Epoch [38/64], Step [400/600], Loss: 0.0004 Epoch [38/64], Step [500/600], Loss: 0.0005 Epoch [38/64], Step [600/600], Loss: 0.0006 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0007 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0009 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0005 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0012 Epoch [40/64], Step [400/600], Loss: 0.0002 Epoch [40/64], Step [500/600], Loss: 0.0004 Epoch [40/64], Step [600/600], Loss: 0.0002 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0002 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0003 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0002 Epoch [43/64], Step [100/600], Loss: 0.0002 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0004 Epoch [43/64], Step [600/600], Loss: 0.0002 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0002 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0001 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0005 Epoch [46/64], Step [500/600], Loss: 0.0002 Epoch [46/64], Step [600/600], Loss: 0.0008 Epoch [47/64], Step [100/600], Loss: 0.0003 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0002 Epoch [47/64], Step [400/600], Loss: 0.0003 Epoch [47/64], Step [500/600], Loss: 0.0004 Epoch [47/64], Step [600/600], Loss: 0.0020 Epoch [48/64], Step [100/600], Loss: 0.0157 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0007 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0002 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0002 Epoch [49/64], Step [300/600], Loss: 0.0002 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0002 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0005 Epoch [50/64], Step [500/600], Loss: 0.0002 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0002 Epoch [53/64], Step [600/600], Loss: 0.0002 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0003 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0002 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0028 Epoch [59/64], Step [100/600], Loss: 0.0208 Epoch [59/64], Step [200/600], Loss: 0.0003 Epoch [59/64], Step [300/600], Loss: 0.0010 Epoch [59/64], Step [400/600], Loss: 0.0003 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0003 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0001 Epoch [60/64], Step [400/600], Loss: 0.0004 Epoch [60/64], Step [500/600], Loss: 0.0003 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0002 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0002 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0001 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0001 Epoch [64/64], Step [400/600], Loss: 0.0001 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 375.347 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins13201168147265634987.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS