Skip to content
Success

Console Output

Started by timer
Running as SYSTEM
Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace
[SSH] script:
TARGETNODE=""""

module load anaconda3_gpu/4.13.0
module load cuda/11.7.0

cd pytorch_train
rm -f train_results_jenkins.csv

# Slurm Arguments
sargs="--nodes=1 "
sargs+="--ntasks-per-node=1 "
sargs+="--mem=16g "
sargs+="--time=00:10:00 "
sargs+="--account=bbmb-hydro "
sargs+="--gpus-per-node=1 "
sargs+="--gpu-bind=closest "
# Add Target node if it exists
if [[ ! -z ${TARGETNODE} ]]
then
    PARTITION=`sinfo --format="%R,%N" -n hydro61  | grep hydro61  | cut -d',' -f1 | tail -1`
    sargs+="--partition=${PARTITION} "
    sargs+="--nodelist=${TARGETNODE} "
else
    sargs+="--partition=a100 "
fi
# Executable to run
scmd="python train.py | tee time.txt"

# Run the command
start_time=`date +%s.%N`
echo $"Starting srun with command"
echo "srun $sargs $scmd"
srun $sargs $scmd
end_time=`date +%s.%N`

runtime=$( echo "$end_time - $start_time" | bc -l )
echo "YVALUE=$runtime" > time.txt
printf "Pytorch test completed in %0.3f secs\n" $runtime

[SSH] executing...
Starting srun with command
srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100  python train.py | tee time.txt
srun: job 98723 queued and waiting for resources
srun: job 98723 has been allocated resources
Running benchmark on hydro03
Epoch [1/64], Step [100/600], Loss: 0.2263
Epoch [1/64], Step [200/600], Loss: 0.1283
Epoch [1/64], Step [300/600], Loss: 0.0616
Epoch [1/64], Step [400/600], Loss: 0.2396
Epoch [1/64], Step [500/600], Loss: 0.0380
Epoch [1/64], Step [600/600], Loss: 0.0510
Epoch [2/64], Step [100/600], Loss: 0.0809
Epoch [2/64], Step [200/600], Loss: 0.0341
Epoch [2/64], Step [300/600], Loss: 0.0318
Epoch [2/64], Step [400/600], Loss: 0.0109
Epoch [2/64], Step [500/600], Loss: 0.0655
Epoch [2/64], Step [600/600], Loss: 0.0780
Epoch [3/64], Step [100/600], Loss: 0.0130
Epoch [3/64], Step [200/600], Loss: 0.0515
Epoch [3/64], Step [300/600], Loss: 0.0119
Epoch [3/64], Step [400/600], Loss: 0.0300
Epoch [3/64], Step [500/600], Loss: 0.0284
Epoch [3/64], Step [600/600], Loss: 0.0253
Epoch [4/64], Step [100/600], Loss: 0.0126
Epoch [4/64], Step [200/600], Loss: 0.2137
Epoch [4/64], Step [300/600], Loss: 0.0178
Epoch [4/64], Step [400/600], Loss: 0.0178
Epoch [4/64], Step [500/600], Loss: 0.0441
Epoch [4/64], Step [600/600], Loss: 0.0239
Epoch [5/64], Step [100/600], Loss: 0.0191
Epoch [5/64], Step [200/600], Loss: 0.0131
Epoch [5/64], Step [300/600], Loss: 0.0229
Epoch [5/64], Step [400/600], Loss: 0.0322
Epoch [5/64], Step [500/600], Loss: 0.0174
Epoch [5/64], Step [600/600], Loss: 0.0135
Epoch [6/64], Step [100/600], Loss: 0.0249
Epoch [6/64], Step [200/600], Loss: 0.0126
Epoch [6/64], Step [300/600], Loss: 0.0155
Epoch [6/64], Step [400/600], Loss: 0.0064
Epoch [6/64], Step [500/600], Loss: 0.0173
Epoch [6/64], Step [600/600], Loss: 0.0266
Epoch [7/64], Step [100/600], Loss: 0.0020
Epoch [7/64], Step [200/600], Loss: 0.0121
Epoch [7/64], Step [300/600], Loss: 0.0057
Epoch [7/64], Step [400/600], Loss: 0.0198
Epoch [7/64], Step [500/600], Loss: 0.0092
Epoch [7/64], Step [600/600], Loss: 0.0058
Epoch [8/64], Step [100/600], Loss: 0.0136
Epoch [8/64], Step [200/600], Loss: 0.0078
Epoch [8/64], Step [300/600], Loss: 0.0034
Epoch [8/64], Step [400/600], Loss: 0.0036
Epoch [8/64], Step [500/600], Loss: 0.0269
Epoch [8/64], Step [600/600], Loss: 0.0182
Epoch [9/64], Step [100/600], Loss: 0.0141
Epoch [9/64], Step [200/600], Loss: 0.0061
Epoch [9/64], Step [300/600], Loss: 0.0293
Epoch [9/64], Step [400/600], Loss: 0.0051
Epoch [9/64], Step [500/600], Loss: 0.0201
Epoch [9/64], Step [600/600], Loss: 0.0015
Epoch [10/64], Step [100/600], Loss: 0.0067
Epoch [10/64], Step [200/600], Loss: 0.0004
Epoch [10/64], Step [300/600], Loss: 0.0016
Epoch [10/64], Step [400/600], Loss: 0.0229
Epoch [10/64], Step [500/600], Loss: 0.0049
Epoch [10/64], Step [600/600], Loss: 0.0058
Epoch [11/64], Step [100/600], Loss: 0.0015
Epoch [11/64], Step [200/600], Loss: 0.0190
Epoch [11/64], Step [300/600], Loss: 0.0065
Epoch [11/64], Step [400/600], Loss: 0.0023
Epoch [11/64], Step [500/600], Loss: 0.0117
Epoch [11/64], Step [600/600], Loss: 0.0015
Epoch [12/64], Step [100/600], Loss: 0.0151
Epoch [12/64], Step [200/600], Loss: 0.0165
Epoch [12/64], Step [300/600], Loss: 0.0018
Epoch [12/64], Step [400/600], Loss: 0.0264
Epoch [12/64], Step [500/600], Loss: 0.0162
Epoch [12/64], Step [600/600], Loss: 0.0040
Epoch [13/64], Step [100/600], Loss: 0.0087
Epoch [13/64], Step [200/600], Loss: 0.0061
Epoch [13/64], Step [300/600], Loss: 0.0256
Epoch [13/64], Step [400/600], Loss: 0.0041
Epoch [13/64], Step [500/600], Loss: 0.0013
Epoch [13/64], Step [600/600], Loss: 0.0061
Epoch [14/64], Step [100/600], Loss: 0.0146
Epoch [14/64], Step [200/600], Loss: 0.0030
Epoch [14/64], Step [300/600], Loss: 0.0043
Epoch [14/64], Step [400/600], Loss: 0.0120
Epoch [14/64], Step [500/600], Loss: 0.0003
Epoch [14/64], Step [600/600], Loss: 0.0151
Epoch [15/64], Step [100/600], Loss: 0.0015
Epoch [15/64], Step [200/600], Loss: 0.0098
Epoch [15/64], Step [300/600], Loss: 0.0032
Epoch [15/64], Step [400/600], Loss: 0.0060
Epoch [15/64], Step [500/600], Loss: 0.0073
Epoch [15/64], Step [600/600], Loss: 0.0036
Epoch [16/64], Step [100/600], Loss: 0.0017
Epoch [16/64], Step [200/600], Loss: 0.0539
Epoch [16/64], Step [300/600], Loss: 0.0008
Epoch [16/64], Step [400/600], Loss: 0.0029
Epoch [16/64], Step [500/600], Loss: 0.0027
Epoch [16/64], Step [600/600], Loss: 0.0003
Epoch [17/64], Step [100/600], Loss: 0.0041
Epoch [17/64], Step [200/600], Loss: 0.0005
Epoch [17/64], Step [300/600], Loss: 0.0040
Epoch [17/64], Step [400/600], Loss: 0.0081
Epoch [17/64], Step [500/600], Loss: 0.0025
Epoch [17/64], Step [600/600], Loss: 0.0151
Epoch [18/64], Step [100/600], Loss: 0.0005
Epoch [18/64], Step [200/600], Loss: 0.0040
Epoch [18/64], Step [300/600], Loss: 0.0037
Epoch [18/64], Step [400/600], Loss: 0.0030
Epoch [18/64], Step [500/600], Loss: 0.0005
Epoch [18/64], Step [600/600], Loss: 0.0318
Epoch [19/64], Step [100/600], Loss: 0.0014
Epoch [19/64], Step [200/600], Loss: 0.0014
Epoch [19/64], Step [300/600], Loss: 0.0005
Epoch [19/64], Step [400/600], Loss: 0.0083
Epoch [19/64], Step [500/600], Loss: 0.0002
Epoch [19/64], Step [600/600], Loss: 0.0011
Epoch [20/64], Step [100/600], Loss: 0.0018
Epoch [20/64], Step [200/600], Loss: 0.0026
Epoch [20/64], Step [300/600], Loss: 0.0033
Epoch [20/64], Step [400/600], Loss: 0.0062
Epoch [20/64], Step [500/600], Loss: 0.0051
Epoch [20/64], Step [600/600], Loss: 0.0017
Epoch [21/64], Step [100/600], Loss: 0.0021
Epoch [21/64], Step [200/600], Loss: 0.0007
Epoch [21/64], Step [300/600], Loss: 0.0113
Epoch [21/64], Step [400/600], Loss: 0.0026
Epoch [21/64], Step [500/600], Loss: 0.0007
Epoch [21/64], Step [600/600], Loss: 0.0236
Epoch [22/64], Step [100/600], Loss: 0.0004
Epoch [22/64], Step [200/600], Loss: 0.0001
Epoch [22/64], Step [300/600], Loss: 0.0001
Epoch [22/64], Step [400/600], Loss: 0.0030
Epoch [22/64], Step [500/600], Loss: 0.0067
Epoch [22/64], Step [600/600], Loss: 0.0001
Epoch [23/64], Step [100/600], Loss: 0.0084
Epoch [23/64], Step [200/600], Loss: 0.0003
Epoch [23/64], Step [300/600], Loss: 0.0006
Epoch [23/64], Step [400/600], Loss: 0.0003
Epoch [23/64], Step [500/600], Loss: 0.0007
Epoch [23/64], Step [600/600], Loss: 0.0007
Epoch [24/64], Step [100/600], Loss: 0.0029
Epoch [24/64], Step [200/600], Loss: 0.0011
Epoch [24/64], Step [300/600], Loss: 0.0002
Epoch [24/64], Step [400/600], Loss: 0.0003
Epoch [24/64], Step [500/600], Loss: 0.0001
Epoch [24/64], Step [600/600], Loss: 0.0009
Epoch [25/64], Step [100/600], Loss: 0.0002
Epoch [25/64], Step [200/600], Loss: 0.0013
Epoch [25/64], Step [300/600], Loss: 0.0001
Epoch [25/64], Step [400/600], Loss: 0.0008
Epoch [25/64], Step [500/600], Loss: 0.0006
Epoch [25/64], Step [600/600], Loss: 0.0003
Epoch [26/64], Step [100/600], Loss: 0.0002
Epoch [26/64], Step [200/600], Loss: 0.0003
Epoch [26/64], Step [300/600], Loss: 0.0001
Epoch [26/64], Step [400/600], Loss: 0.0001
Epoch [26/64], Step [500/600], Loss: 0.0001
Epoch [26/64], Step [600/600], Loss: 0.0002
Epoch [27/64], Step [100/600], Loss: 0.0001
Epoch [27/64], Step [200/600], Loss: 0.0000
Epoch [27/64], Step [300/600], Loss: 0.0002
Epoch [27/64], Step [400/600], Loss: 0.0002
Epoch [27/64], Step [500/600], Loss: 0.0002
Epoch [27/64], Step [600/600], Loss: 0.0009
Epoch [28/64], Step [100/600], Loss: 0.0002
Epoch [28/64], Step [200/600], Loss: 0.0001
Epoch [28/64], Step [300/600], Loss: 0.0003
Epoch [28/64], Step [400/600], Loss: 0.0000
Epoch [28/64], Step [500/600], Loss: 0.0549
Epoch [28/64], Step [600/600], Loss: 0.0004
Epoch [29/64], Step [100/600], Loss: 0.0031
Epoch [29/64], Step [200/600], Loss: 0.0537
Epoch [29/64], Step [300/600], Loss: 0.0064
Epoch [29/64], Step [400/600], Loss: 0.0170
Epoch [29/64], Step [500/600], Loss: 0.0307
Epoch [29/64], Step [600/600], Loss: 0.0028
Epoch [30/64], Step [100/600], Loss: 0.0010
Epoch [30/64], Step [200/600], Loss: 0.0002
Epoch [30/64], Step [300/600], Loss: 0.0001
Epoch [30/64], Step [400/600], Loss: 0.0003
Epoch [30/64], Step [500/600], Loss: 0.0010
Epoch [30/64], Step [600/600], Loss: 0.0013
Epoch [31/64], Step [100/600], Loss: 0.0001
Epoch [31/64], Step [200/600], Loss: 0.0000
Epoch [31/64], Step [300/600], Loss: 0.0001
Epoch [31/64], Step [400/600], Loss: 0.0000
Epoch [31/64], Step [500/600], Loss: 0.0004
Epoch [31/64], Step [600/600], Loss: 0.0004
Epoch [32/64], Step [100/600], Loss: 0.0000
Epoch [32/64], Step [200/600], Loss: 0.0000
Epoch [32/64], Step [300/600], Loss: 0.0007
Epoch [32/64], Step [400/600], Loss: 0.0007
Epoch [32/64], Step [500/600], Loss: 0.0005
Epoch [32/64], Step [600/600], Loss: 0.0016
Epoch [33/64], Step [100/600], Loss: 0.0000
Epoch [33/64], Step [200/600], Loss: 0.0001
Epoch [33/64], Step [300/600], Loss: 0.0004
Epoch [33/64], Step [400/600], Loss: 0.0001
Epoch [33/64], Step [500/600], Loss: 0.0006
Epoch [33/64], Step [600/600], Loss: 0.0006
Epoch [34/64], Step [100/600], Loss: 0.0001
Epoch [34/64], Step [200/600], Loss: 0.0001
Epoch [34/64], Step [300/600], Loss: 0.0001
Epoch [34/64], Step [400/600], Loss: 0.0001
Epoch [34/64], Step [500/600], Loss: 0.0001
Epoch [34/64], Step [600/600], Loss: 0.0002
Epoch [35/64], Step [100/600], Loss: 0.0001
Epoch [35/64], Step [200/600], Loss: 0.0001
Epoch [35/64], Step [300/600], Loss: 0.0002
Epoch [35/64], Step [400/600], Loss: 0.0001
Epoch [35/64], Step [500/600], Loss: 0.0000
Epoch [35/64], Step [600/600], Loss: 0.0000
Epoch [36/64], Step [100/600], Loss: 0.0001
Epoch [36/64], Step [200/600], Loss: 0.0001
Epoch [36/64], Step [300/600], Loss: 0.0001
Epoch [36/64], Step [400/600], Loss: 0.0001
Epoch [36/64], Step [500/600], Loss: 0.0002
Epoch [36/64], Step [600/600], Loss: 0.0884
Epoch [37/64], Step [100/600], Loss: 0.0003
Epoch [37/64], Step [200/600], Loss: 0.0067
Epoch [37/64], Step [300/600], Loss: 0.0101
Epoch [37/64], Step [400/600], Loss: 0.0003
Epoch [37/64], Step [500/600], Loss: 0.0129
Epoch [37/64], Step [600/600], Loss: 0.0015
Epoch [38/64], Step [100/600], Loss: 0.0003
Epoch [38/64], Step [200/600], Loss: 0.0002
Epoch [38/64], Step [300/600], Loss: 0.0003
Epoch [38/64], Step [400/600], Loss: 0.0004
Epoch [38/64], Step [500/600], Loss: 0.0005
Epoch [38/64], Step [600/600], Loss: 0.0006
Epoch [39/64], Step [100/600], Loss: 0.0000
Epoch [39/64], Step [200/600], Loss: 0.0007
Epoch [39/64], Step [300/600], Loss: 0.0001
Epoch [39/64], Step [400/600], Loss: 0.0009
Epoch [39/64], Step [500/600], Loss: 0.0001
Epoch [39/64], Step [600/600], Loss: 0.0001
Epoch [40/64], Step [100/600], Loss: 0.0005
Epoch [40/64], Step [200/600], Loss: 0.0000
Epoch [40/64], Step [300/600], Loss: 0.0012
Epoch [40/64], Step [400/600], Loss: 0.0002
Epoch [40/64], Step [500/600], Loss: 0.0004
Epoch [40/64], Step [600/600], Loss: 0.0002
Epoch [41/64], Step [100/600], Loss: 0.0001
Epoch [41/64], Step [200/600], Loss: 0.0000
Epoch [41/64], Step [300/600], Loss: 0.0002
Epoch [41/64], Step [400/600], Loss: 0.0001
Epoch [41/64], Step [500/600], Loss: 0.0001
Epoch [41/64], Step [600/600], Loss: 0.0001
Epoch [42/64], Step [100/600], Loss: 0.0001
Epoch [42/64], Step [200/600], Loss: 0.0000
Epoch [42/64], Step [300/600], Loss: 0.0003
Epoch [42/64], Step [400/600], Loss: 0.0001
Epoch [42/64], Step [500/600], Loss: 0.0001
Epoch [42/64], Step [600/600], Loss: 0.0002
Epoch [43/64], Step [100/600], Loss: 0.0002
Epoch [43/64], Step [200/600], Loss: 0.0000
Epoch [43/64], Step [300/600], Loss: 0.0000
Epoch [43/64], Step [400/600], Loss: 0.0000
Epoch [43/64], Step [500/600], Loss: 0.0004
Epoch [43/64], Step [600/600], Loss: 0.0002
Epoch [44/64], Step [100/600], Loss: 0.0000
Epoch [44/64], Step [200/600], Loss: 0.0000
Epoch [44/64], Step [300/600], Loss: 0.0000
Epoch [44/64], Step [400/600], Loss: 0.0001
Epoch [44/64], Step [500/600], Loss: 0.0002
Epoch [44/64], Step [600/600], Loss: 0.0000
Epoch [45/64], Step [100/600], Loss: 0.0000
Epoch [45/64], Step [200/600], Loss: 0.0001
Epoch [45/64], Step [300/600], Loss: 0.0001
Epoch [45/64], Step [400/600], Loss: 0.0000
Epoch [45/64], Step [500/600], Loss: 0.0001
Epoch [45/64], Step [600/600], Loss: 0.0000
Epoch [46/64], Step [100/600], Loss: 0.0001
Epoch [46/64], Step [200/600], Loss: 0.0000
Epoch [46/64], Step [300/600], Loss: 0.0000
Epoch [46/64], Step [400/600], Loss: 0.0005
Epoch [46/64], Step [500/600], Loss: 0.0002
Epoch [46/64], Step [600/600], Loss: 0.0008
Epoch [47/64], Step [100/600], Loss: 0.0003
Epoch [47/64], Step [200/600], Loss: 0.0000
Epoch [47/64], Step [300/600], Loss: 0.0002
Epoch [47/64], Step [400/600], Loss: 0.0003
Epoch [47/64], Step [500/600], Loss: 0.0004
Epoch [47/64], Step [600/600], Loss: 0.0020
Epoch [48/64], Step [100/600], Loss: 0.0157
Epoch [48/64], Step [200/600], Loss: 0.0001
Epoch [48/64], Step [300/600], Loss: 0.0007
Epoch [48/64], Step [400/600], Loss: 0.0000
Epoch [48/64], Step [500/600], Loss: 0.0002
Epoch [48/64], Step [600/600], Loss: 0.0000
Epoch [49/64], Step [100/600], Loss: 0.0000
Epoch [49/64], Step [200/600], Loss: 0.0002
Epoch [49/64], Step [300/600], Loss: 0.0002
Epoch [49/64], Step [400/600], Loss: 0.0001
Epoch [49/64], Step [500/600], Loss: 0.0002
Epoch [49/64], Step [600/600], Loss: 0.0001
Epoch [50/64], Step [100/600], Loss: 0.0001
Epoch [50/64], Step [200/600], Loss: 0.0000
Epoch [50/64], Step [300/600], Loss: 0.0001
Epoch [50/64], Step [400/600], Loss: 0.0005
Epoch [50/64], Step [500/600], Loss: 0.0002
Epoch [50/64], Step [600/600], Loss: 0.0001
Epoch [51/64], Step [100/600], Loss: 0.0001
Epoch [51/64], Step [200/600], Loss: 0.0000
Epoch [51/64], Step [300/600], Loss: 0.0001
Epoch [51/64], Step [400/600], Loss: 0.0001
Epoch [51/64], Step [500/600], Loss: 0.0001
Epoch [51/64], Step [600/600], Loss: 0.0000
Epoch [52/64], Step [100/600], Loss: 0.0000
Epoch [52/64], Step [200/600], Loss: 0.0001
Epoch [52/64], Step [300/600], Loss: 0.0000
Epoch [52/64], Step [400/600], Loss: 0.0000
Epoch [52/64], Step [500/600], Loss: 0.0001
Epoch [52/64], Step [600/600], Loss: 0.0000
Epoch [53/64], Step [100/600], Loss: 0.0001
Epoch [53/64], Step [200/600], Loss: 0.0001
Epoch [53/64], Step [300/600], Loss: 0.0000
Epoch [53/64], Step [400/600], Loss: 0.0000
Epoch [53/64], Step [500/600], Loss: 0.0002
Epoch [53/64], Step [600/600], Loss: 0.0002
Epoch [54/64], Step [100/600], Loss: 0.0001
Epoch [54/64], Step [200/600], Loss: 0.0000
Epoch [54/64], Step [300/600], Loss: 0.0001
Epoch [54/64], Step [400/600], Loss: 0.0001
Epoch [54/64], Step [500/600], Loss: 0.0003
Epoch [54/64], Step [600/600], Loss: 0.0001
Epoch [55/64], Step [100/600], Loss: 0.0000
Epoch [55/64], Step [200/600], Loss: 0.0000
Epoch [55/64], Step [300/600], Loss: 0.0000
Epoch [55/64], Step [400/600], Loss: 0.0000
Epoch [55/64], Step [500/600], Loss: 0.0000
Epoch [55/64], Step [600/600], Loss: 0.0002
Epoch [56/64], Step [100/600], Loss: 0.0000
Epoch [56/64], Step [200/600], Loss: 0.0000
Epoch [56/64], Step [300/600], Loss: 0.0001
Epoch [56/64], Step [400/600], Loss: 0.0000
Epoch [56/64], Step [500/600], Loss: 0.0000
Epoch [56/64], Step [600/600], Loss: 0.0000
Epoch [57/64], Step [100/600], Loss: 0.0000
Epoch [57/64], Step [200/600], Loss: 0.0000
Epoch [57/64], Step [300/600], Loss: 0.0001
Epoch [57/64], Step [400/600], Loss: 0.0000
Epoch [57/64], Step [500/600], Loss: 0.0001
Epoch [57/64], Step [600/600], Loss: 0.0000
Epoch [58/64], Step [100/600], Loss: 0.0001
Epoch [58/64], Step [200/600], Loss: 0.0000
Epoch [58/64], Step [300/600], Loss: 0.0000
Epoch [58/64], Step [400/600], Loss: 0.0001
Epoch [58/64], Step [500/600], Loss: 0.0000
Epoch [58/64], Step [600/600], Loss: 0.0028
Epoch [59/64], Step [100/600], Loss: 0.0208
Epoch [59/64], Step [200/600], Loss: 0.0003
Epoch [59/64], Step [300/600], Loss: 0.0010
Epoch [59/64], Step [400/600], Loss: 0.0003
Epoch [59/64], Step [500/600], Loss: 0.0001
Epoch [59/64], Step [600/600], Loss: 0.0003
Epoch [60/64], Step [100/600], Loss: 0.0000
Epoch [60/64], Step [200/600], Loss: 0.0000
Epoch [60/64], Step [300/600], Loss: 0.0001
Epoch [60/64], Step [400/600], Loss: 0.0004
Epoch [60/64], Step [500/600], Loss: 0.0003
Epoch [60/64], Step [600/600], Loss: 0.0001
Epoch [61/64], Step [100/600], Loss: 0.0000
Epoch [61/64], Step [200/600], Loss: 0.0001
Epoch [61/64], Step [300/600], Loss: 0.0002
Epoch [61/64], Step [400/600], Loss: 0.0001
Epoch [61/64], Step [500/600], Loss: 0.0001
Epoch [61/64], Step [600/600], Loss: 0.0002
Epoch [62/64], Step [100/600], Loss: 0.0001
Epoch [62/64], Step [200/600], Loss: 0.0000
Epoch [62/64], Step [300/600], Loss: 0.0001
Epoch [62/64], Step [400/600], Loss: 0.0000
Epoch [62/64], Step [500/600], Loss: 0.0000
Epoch [62/64], Step [600/600], Loss: 0.0000
Epoch [63/64], Step [100/600], Loss: 0.0001
Epoch [63/64], Step [200/600], Loss: 0.0000
Epoch [63/64], Step [300/600], Loss: 0.0000
Epoch [63/64], Step [400/600], Loss: 0.0001
Epoch [63/64], Step [500/600], Loss: 0.0000
Epoch [63/64], Step [600/600], Loss: 0.0000
Epoch [64/64], Step [100/600], Loss: 0.0001
Epoch [64/64], Step [200/600], Loss: 0.0001
Epoch [64/64], Step [300/600], Loss: 0.0001
Epoch [64/64], Step [400/600], Loss: 0.0001
Epoch [64/64], Step [500/600], Loss: 0.0000
Epoch [64/64], Step [600/600], Loss: 0.0000
Pytorch test completed in 375.347 secs

[SSH] completed
[SSH] exit-status: 0

[workspace] $ /bin/sh -xe /tmp/jenkins13201168147265634987.sh
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace
Recording plot data
Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt
Finished: SUCCESS