Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98853 queued and waiting for resources srun: job 98853 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2350 Epoch [1/64], Step [200/600], Loss: 0.0758 Epoch [1/64], Step [300/600], Loss: 0.0667 Epoch [1/64], Step [400/600], Loss: 0.0548 Epoch [1/64], Step [500/600], Loss: 0.0341 Epoch [1/64], Step [600/600], Loss: 0.0607 Epoch [2/64], Step [100/600], Loss: 0.0685 Epoch [2/64], Step [200/600], Loss: 0.0392 Epoch [2/64], Step [300/600], Loss: 0.0402 Epoch [2/64], Step [400/600], Loss: 0.0683 Epoch [2/64], Step [500/600], Loss: 0.0258 Epoch [2/64], Step [600/600], Loss: 0.0143 Epoch [3/64], Step [100/600], Loss: 0.0255 Epoch [3/64], Step [200/600], Loss: 0.0371 Epoch [3/64], Step [300/600], Loss: 0.0903 Epoch [3/64], Step [400/600], Loss: 0.0206 Epoch [3/64], Step [500/600], Loss: 0.0171 Epoch [3/64], Step [600/600], Loss: 0.0745 Epoch [4/64], Step [100/600], Loss: 0.0576 Epoch [4/64], Step [200/600], Loss: 0.0068 Epoch [4/64], Step [300/600], Loss: 0.0448 Epoch [4/64], Step [400/600], Loss: 0.0932 Epoch [4/64], Step [500/600], Loss: 0.0482 Epoch [4/64], Step [600/600], Loss: 0.0172 Epoch [5/64], Step [100/600], Loss: 0.0204 Epoch [5/64], Step [200/600], Loss: 0.0581 Epoch [5/64], Step [300/600], Loss: 0.0298 Epoch [5/64], Step [400/600], Loss: 0.0388 Epoch [5/64], Step [500/600], Loss: 0.0121 Epoch [5/64], Step [600/600], Loss: 0.0305 Epoch [6/64], Step [100/600], Loss: 0.0533 Epoch [6/64], Step [200/600], Loss: 0.0865 Epoch [6/64], Step [300/600], Loss: 0.0178 Epoch [6/64], Step [400/600], Loss: 0.0890 Epoch [6/64], Step [500/600], Loss: 0.0576 Epoch [6/64], Step [600/600], Loss: 0.0212 Epoch [7/64], Step [100/600], Loss: 0.0050 Epoch [7/64], Step [200/600], Loss: 0.0090 Epoch [7/64], Step [300/600], Loss: 0.0013 Epoch [7/64], Step [400/600], Loss: 0.0722 Epoch [7/64], Step [500/600], Loss: 0.0628 Epoch [7/64], Step [600/600], Loss: 0.0428 Epoch [8/64], Step [100/600], Loss: 0.0084 Epoch [8/64], Step [200/600], Loss: 0.0350 Epoch [8/64], Step [300/600], Loss: 0.0074 Epoch [8/64], Step [400/600], Loss: 0.0101 Epoch [8/64], Step [500/600], Loss: 0.0081 Epoch [8/64], Step [600/600], Loss: 0.0696 Epoch [9/64], Step [100/600], Loss: 0.0162 Epoch [9/64], Step [200/600], Loss: 0.0320 Epoch [9/64], Step [300/600], Loss: 0.0222 Epoch [9/64], Step [400/600], Loss: 0.0032 Epoch [9/64], Step [500/600], Loss: 0.0141 Epoch [9/64], Step [600/600], Loss: 0.0212 Epoch [10/64], Step [100/600], Loss: 0.0044 Epoch [10/64], Step [200/600], Loss: 0.0174 Epoch [10/64], Step [300/600], Loss: 0.0093 Epoch [10/64], Step [400/600], Loss: 0.0092 Epoch [10/64], Step [500/600], Loss: 0.0168 Epoch [10/64], Step [600/600], Loss: 0.0095 Epoch [11/64], Step [100/600], Loss: 0.0109 Epoch [11/64], Step [200/600], Loss: 0.0085 Epoch [11/64], Step [300/600], Loss: 0.0083 Epoch [11/64], Step [400/600], Loss: 0.0051 Epoch [11/64], Step [500/600], Loss: 0.0340 Epoch [11/64], Step [600/600], Loss: 0.0161 Epoch [12/64], Step [100/600], Loss: 0.0010 Epoch [12/64], Step [200/600], Loss: 0.0060 Epoch [12/64], Step [300/600], Loss: 0.0455 Epoch [12/64], Step [400/600], Loss: 0.0015 Epoch [12/64], Step [500/600], Loss: 0.0133 Epoch [12/64], Step [600/600], Loss: 0.0034 Epoch [13/64], Step [100/600], Loss: 0.0064 Epoch [13/64], Step [200/600], Loss: 0.0289 Epoch [13/64], Step [300/600], Loss: 0.0053 Epoch [13/64], Step [400/600], Loss: 0.0032 Epoch [13/64], Step [500/600], Loss: 0.0091 Epoch [13/64], Step [600/600], Loss: 0.0013 Epoch [14/64], Step [100/600], Loss: 0.0091 Epoch [14/64], Step [200/600], Loss: 0.0042 Epoch [14/64], Step [300/600], Loss: 0.0435 Epoch [14/64], Step [400/600], Loss: 0.0134 Epoch [14/64], Step [500/600], Loss: 0.0095 Epoch [14/64], Step [600/600], Loss: 0.0112 Epoch [15/64], Step [100/600], Loss: 0.0013 Epoch [15/64], Step [200/600], Loss: 0.0009 Epoch [15/64], Step [300/600], Loss: 0.0096 Epoch [15/64], Step [400/600], Loss: 0.0321 Epoch [15/64], Step [500/600], Loss: 0.0046 Epoch [15/64], Step [600/600], Loss: 0.0050 Epoch [16/64], Step [100/600], Loss: 0.0006 Epoch [16/64], Step [200/600], Loss: 0.0137 Epoch [16/64], Step [300/600], Loss: 0.0023 Epoch [16/64], Step [400/600], Loss: 0.0025 Epoch [16/64], Step [500/600], Loss: 0.0049 Epoch [16/64], Step [600/600], Loss: 0.0070 Epoch [17/64], Step [100/600], Loss: 0.0007 Epoch [17/64], Step [200/600], Loss: 0.0005 Epoch [17/64], Step [300/600], Loss: 0.0122 Epoch [17/64], Step [400/600], Loss: 0.0098 Epoch [17/64], Step [500/600], Loss: 0.0047 Epoch [17/64], Step [600/600], Loss: 0.0234 Epoch [18/64], Step [100/600], Loss: 0.0004 Epoch [18/64], Step [200/600], Loss: 0.0051 Epoch [18/64], Step [300/600], Loss: 0.0006 Epoch [18/64], Step [400/600], Loss: 0.0023 Epoch [18/64], Step [500/600], Loss: 0.0004 Epoch [18/64], Step [600/600], Loss: 0.0041 Epoch [19/64], Step [100/600], Loss: 0.0006 Epoch [19/64], Step [200/600], Loss: 0.0234 Epoch [19/64], Step [300/600], Loss: 0.0007 Epoch [19/64], Step [400/600], Loss: 0.0012 Epoch [19/64], Step [500/600], Loss: 0.0077 Epoch [19/64], Step [600/600], Loss: 0.0023 Epoch [20/64], Step [100/600], Loss: 0.0014 Epoch [20/64], Step [200/600], Loss: 0.0008 Epoch [20/64], Step [300/600], Loss: 0.0009 Epoch [20/64], Step [400/600], Loss: 0.0049 Epoch [20/64], Step [500/600], Loss: 0.0016 Epoch [20/64], Step [600/600], Loss: 0.0276 Epoch [21/64], Step [100/600], Loss: 0.0021 Epoch [21/64], Step [200/600], Loss: 0.0021 Epoch [21/64], Step [300/600], Loss: 0.0031 Epoch [21/64], Step [400/600], Loss: 0.0017 Epoch [21/64], Step [500/600], Loss: 0.0008 Epoch [21/64], Step [600/600], Loss: 0.0055 Epoch [22/64], Step [100/600], Loss: 0.0012 Epoch [22/64], Step [200/600], Loss: 0.0019 Epoch [22/64], Step [300/600], Loss: 0.0002 Epoch [22/64], Step [400/600], Loss: 0.0009 Epoch [22/64], Step [500/600], Loss: 0.0087 Epoch [22/64], Step [600/600], Loss: 0.0026 Epoch [23/64], Step [100/600], Loss: 0.0006 Epoch [23/64], Step [200/600], Loss: 0.0202 Epoch [23/64], Step [300/600], Loss: 0.0024 Epoch [23/64], Step [400/600], Loss: 0.0057 Epoch [23/64], Step [500/600], Loss: 0.0009 Epoch [23/64], Step [600/600], Loss: 0.0103 Epoch [24/64], Step [100/600], Loss: 0.0004 Epoch [24/64], Step [200/600], Loss: 0.0004 Epoch [24/64], Step [300/600], Loss: 0.0027 Epoch [24/64], Step [400/600], Loss: 0.0015 Epoch [24/64], Step [500/600], Loss: 0.0234 Epoch [24/64], Step [600/600], Loss: 0.0023 Epoch [25/64], Step [100/600], Loss: 0.0048 Epoch [25/64], Step [200/600], Loss: 0.0023 Epoch [25/64], Step [300/600], Loss: 0.0295 Epoch [25/64], Step [400/600], Loss: 0.0004 Epoch [25/64], Step [500/600], Loss: 0.0012 Epoch [25/64], Step [600/600], Loss: 0.0019 Epoch [26/64], Step [100/600], Loss: 0.0003 Epoch [26/64], Step [200/600], Loss: 0.0002 Epoch [26/64], Step [300/600], Loss: 0.0004 Epoch [26/64], Step [400/600], Loss: 0.0003 Epoch [26/64], Step [500/600], Loss: 0.0002 Epoch [26/64], Step [600/600], Loss: 0.0008 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0012 Epoch [27/64], Step [300/600], Loss: 0.0006 Epoch [27/64], Step [400/600], Loss: 0.0004 Epoch [27/64], Step [500/600], Loss: 0.0002 Epoch [27/64], Step [600/600], Loss: 0.0004 Epoch [28/64], Step [100/600], Loss: 0.0003 Epoch [28/64], Step [200/600], Loss: 0.0000 Epoch [28/64], Step [300/600], Loss: 0.0004 Epoch [28/64], Step [400/600], Loss: 0.0002 Epoch [28/64], Step [500/600], Loss: 0.0002 Epoch [28/64], Step [600/600], Loss: 0.0002 Epoch [29/64], Step [100/600], Loss: 0.0000 Epoch [29/64], Step [200/600], Loss: 0.0009 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0003 Epoch [29/64], Step [500/600], Loss: 0.0007 Epoch [29/64], Step [600/600], Loss: 0.0003 Epoch [30/64], Step [100/600], Loss: 0.0304 Epoch [30/64], Step [200/600], Loss: 0.0205 Epoch [30/64], Step [300/600], Loss: 0.0262 Epoch [30/64], Step [400/600], Loss: 0.0004 Epoch [30/64], Step [500/600], Loss: 0.0003 Epoch [30/64], Step [600/600], Loss: 0.0121 Epoch [31/64], Step [100/600], Loss: 0.0011 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0000 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0060 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0010 Epoch [32/64], Step [400/600], Loss: 0.0005 Epoch [32/64], Step [500/600], Loss: 0.0003 Epoch [32/64], Step [600/600], Loss: 0.0005 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0009 Epoch [33/64], Step [400/600], Loss: 0.0000 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0002 Epoch [34/64], Step [100/600], Loss: 0.0002 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0005 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0003 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0004 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0000 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0002 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0002 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0002 Epoch [38/64], Step [500/600], Loss: 0.0002 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0000 Epoch [39/64], Step [300/600], Loss: 0.0039 Epoch [39/64], Step [400/600], Loss: 0.0016 Epoch [39/64], Step [500/600], Loss: 0.0050 Epoch [39/64], Step [600/600], Loss: 0.0019 Epoch [40/64], Step [100/600], Loss: 0.0513 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0002 Epoch [40/64], Step [500/600], Loss: 0.0002 Epoch [40/64], Step [600/600], Loss: 0.0028 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0003 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0008 Epoch [42/64], Step [400/600], Loss: 0.0003 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0002 Epoch [43/64], Step [400/600], Loss: 0.0002 Epoch [43/64], Step [500/600], Loss: 0.0002 Epoch [43/64], Step [600/600], Loss: 0.0003 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0002 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0002 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0001 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0001 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0192 Epoch [49/64], Step [600/600], Loss: 0.0033 Epoch [50/64], Step [100/600], Loss: 0.0327 Epoch [50/64], Step [200/600], Loss: 0.0003 Epoch [50/64], Step [300/600], Loss: 0.0036 Epoch [50/64], Step [400/600], Loss: 0.0017 Epoch [50/64], Step [500/600], Loss: 0.0003 Epoch [50/64], Step [600/600], Loss: 0.0059 Epoch [51/64], Step [100/600], Loss: 0.0012 Epoch [51/64], Step [200/600], Loss: 0.0003 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0002 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0003 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0002 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0001 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0002 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0429 Epoch [62/64], Step [500/600], Loss: 0.0032 Epoch [62/64], Step [600/600], Loss: 0.0044 Epoch [63/64], Step [100/600], Loss: 0.0003 Epoch [63/64], Step [200/600], Loss: 0.0005 Epoch [63/64], Step [300/600], Loss: 0.0006 Epoch [63/64], Step [400/600], Loss: 0.0155 Epoch [63/64], Step [500/600], Loss: 0.0022 Epoch [63/64], Step [600/600], Loss: 0.0019 Epoch [64/64], Step [100/600], Loss: 0.0002 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0001 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 378.886 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins8502000314740912625.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS