Skip to content
Success

Console Output

Started by timer
Running as SYSTEM
Building in workspace /var/lib/jenkins/jobs/pytorch_infer/workspace
[SSH] script:
TARGETNODE=""""

module load anaconda3_gpu/4.13.0
module load cuda/11.7.0

cd pytorch_infer
rm -f infer_results_jenkins.csv

# Slurm Arguments
sargs="--nodes=1 "
sargs+="--ntasks-per-node=1 "
sargs+="--mem=16g "
sargs+="--time=00:10:00 "
sargs+="--account=bbmb-hydro "
sargs+="--gpus-per-node=1 "
sargs+="--gpu-bind=closest "
# Add Target node if it exists
if [[ ! -z ${TARGETNODE} ]]
then
    PARTITION=`sinfo --format="%R,%N" -n hydro61  | grep hydro61  | cut -d',' -f1 | tail -1`
    sargs+="--partition=${PARTITION} "
    sargs+="--nodelist=${TARGETNODE} "
else
    sargs+="--partition=a100 "
fi
# Executable to run
scmd="python benchmark.py --model-list jenkins_list_short.txt --bench inference --channels-last --results-file infer_results_jenkins.csv"

# Run the command
start_time=`date +%s.%N`
echo $"Starting srun with command"
echo "srun $sargs $scmd"
srun $sargs $scmd
end_time=`date +%s.%N`

python transpose_results.py

runtime=$( echo "$end_time - $start_time" | bc -l )
echo "YVALUE=$runtime" > time.txt
printf "Pytorch test completed in %0.3f secs\n" $runtime

[SSH] executing...
Starting srun with command
srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100  python benchmark.py --model-list jenkins_list_short.txt --bench inference --channels-last --results-file infer_results_jenkins.csv
srun: job 96270 queued and waiting for resources
srun: job 96270 has been allocated resources
Running benchmark on hydro06
Running bulk validation on these pretrained models: vgg19_bn, resnet18, resnet34, simplenetv1_5m_m1, 
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model vgg19_bn created, param count: 143678248
Running inference benchmark on vgg19_bn for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 1426.37 samples/sec. 179.477 ms/step.
Infer [16/40]. 1426.77 samples/sec. 179.427 ms/step.
Infer [24/40]. 1425.79 samples/sec. 179.549 ms/step.
Infer [32/40]. 1425.55 samples/sec. 179.580 ms/step.
Infer [40/40]. 1425.24 samples/sec. 179.619 ms/step.
Inference benchmark of vgg19_bn done. 1425.12 samples/sec, 179.62 ms/step
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model resnet18 created, param count: 11689512
Running inference benchmark on resnet18 for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 10629.59 samples/sec. 24.084 ms/step.
Infer [16/40]. 10622.65 samples/sec. 24.099 ms/step.
Infer [24/40]. 10616.63 samples/sec. 24.113 ms/step.
Infer [32/40]. 10602.01 samples/sec. 24.146 ms/step.
Infer [40/40]. 10600.10 samples/sec. 24.151 ms/step.
Inference benchmark of resnet18 done. 10596.04 samples/sec, 24.15 ms/step
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model resnet34 created, param count: 21797672
Running inference benchmark on resnet34 for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 6431.39 samples/sec. 39.805 ms/step.
Infer [16/40]. 6430.03 samples/sec. 39.813 ms/step.
Infer [24/40]. 6446.47 samples/sec. 39.712 ms/step.
Infer [32/40]. 6442.90 samples/sec. 39.734 ms/step.
Infer [40/40]. 6440.51 samples/sec. 39.748 ms/step.
Inference benchmark of resnet34 done. 6439.01 samples/sec, 39.75 ms/step
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model simplenetv1_5m_m1 created, param count: 5752808
Running inference benchmark on simplenetv1_5m_m1 for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 13968.00 samples/sec. 18.328 ms/step.
Infer [16/40]. 13967.44 samples/sec. 18.328 ms/step.
Infer [24/40]. 13974.64 samples/sec. 18.319 ms/step.
Infer [32/40]. 13973.02 samples/sec. 18.321 ms/step.
Infer [40/40]. 13964.24 samples/sec. 18.333 ms/step.
Inference benchmark of simplenetv1_5m_m1 done. 13957.81 samples/sec, 18.33 ms/step
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='vgg19_bn', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='resnet18', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='resnet34', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='simplenetv1_5m_m1', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
--result
[
    {
        "model": "simplenetv1_5m_m1",
        "infer_samples_per_sec": 13957.81,
        "infer_step_time": 18.333,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 5.75
    },
    {
        "model": "resnet18",
        "infer_samples_per_sec": 10596.04,
        "infer_step_time": 24.151,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 11.69
    },
    {
        "model": "resnet34",
        "infer_samples_per_sec": 6439.01,
        "infer_step_time": 39.748,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 21.8
    },
    {
        "model": "vgg19_bn",
        "infer_samples_per_sec": 1425.12,
        "infer_step_time": 179.619,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 143.68
    }
]
Pytorch test completed in 127.279 secs

[SSH] completed
[SSH] exit-status: 0

[workspace] $ /bin/sh -xe /tmp/jenkins14510170851053982560.sh
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_infer/time.txt' /var/lib/jenkins/jobs/pytorch_infer/workspace
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_infer/infer_results_jenkins.csv' /var/lib/jenkins/jobs/pytorch_infer/workspace
Recording plot data
Saving plot series data from: /var/lib/jenkins/jobs/pytorch_infer/workspace/time.txt
Finished: SUCCESS