Skip to content
Success

Console Output

Started by timer
Running as SYSTEM
Building in workspace /var/lib/jenkins/jobs/pytorch_infer/workspace
[SSH] script:
TARGETNODE=""""

module load anaconda3_gpu/4.13.0
module load cuda/11.7.0

cd pytorch_infer
rm -f infer_results_jenkins.csv

# Slurm Arguments
sargs="--nodes=1 "
sargs+="--ntasks-per-node=1 "
sargs+="--mem=16g "
sargs+="--time=00:10:00 "
sargs+="--account=bbmb-hydro "
sargs+="--gpus-per-node=1 "
sargs+="--gpu-bind=closest "
# Add Target node if it exists
if [[ ! -z ${TARGETNODE} ]]
then
    PARTITION=`sinfo --format="%R,%N" -n hydro61  | grep hydro61  | cut -d',' -f1 | tail -1`
    sargs+="--partition=${PARTITION} "
    sargs+="--nodelist=${TARGETNODE} "
else
    sargs+="--partition=a100 "
fi
# Executable to run
scmd="python benchmark.py --model-list jenkins_list_short.txt --bench inference --channels-last --results-file infer_results_jenkins.csv"

# Run the command
start_time=`date +%s.%N`
echo $"Starting srun with command"
echo "srun $sargs $scmd"
srun $sargs $scmd
end_time=`date +%s.%N`

python transpose_results.py

runtime=$( echo "$end_time - $start_time" | bc -l )
echo "YVALUE=$runtime" > time.txt
printf "Pytorch test completed in %0.3f secs\n" $runtime

[SSH] executing...
Starting srun with command
srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100  python benchmark.py --model-list jenkins_list_short.txt --bench inference --channels-last --results-file infer_results_jenkins.csv
srun: job 98486 queued and waiting for resources
srun: job 98486 has been allocated resources
Running benchmark on hydro05
Running bulk validation on these pretrained models: vgg19_bn, resnet18, resnet34, simplenetv1_5m_m1, 
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model vgg19_bn created, param count: 143678248
Running inference benchmark on vgg19_bn for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 1425.05 samples/sec. 179.643 ms/step.
Infer [16/40]. 1423.82 samples/sec. 179.799 ms/step.
Infer [24/40]. 1423.01 samples/sec. 179.900 ms/step.
Infer [32/40]. 1422.95 samples/sec. 179.908 ms/step.
Infer [40/40]. 1422.71 samples/sec. 179.938 ms/step.
Inference benchmark of vgg19_bn done. 1422.56 samples/sec, 179.94 ms/step
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model resnet18 created, param count: 11689512
Running inference benchmark on resnet18 for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 10606.66 samples/sec. 24.136 ms/step.
Infer [16/40]. 10603.23 samples/sec. 24.144 ms/step.
Infer [24/40]. 10598.16 samples/sec. 24.155 ms/step.
Infer [32/40]. 10597.49 samples/sec. 24.157 ms/step.
Infer [40/40]. 10599.17 samples/sec. 24.153 ms/step.
Inference benchmark of resnet18 done. 10595.36 samples/sec, 24.15 ms/step
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model resnet34 created, param count: 21797672
Running inference benchmark on resnet34 for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 6429.60 samples/sec. 39.816 ms/step.
Infer [16/40]. 6443.48 samples/sec. 39.730 ms/step.
Infer [24/40]. 6437.45 samples/sec. 39.767 ms/step.
Infer [32/40]. 6433.29 samples/sec. 39.793 ms/step.
Infer [40/40]. 6439.13 samples/sec. 39.757 ms/step.
Inference benchmark of resnet34 done. 6437.65 samples/sec, 39.76 ms/step
Benchmarking in float32 precision. NHWC layout. torchscript disabled
Model simplenetv1_5m_m1 created, param count: 5752808
Running inference benchmark on simplenetv1_5m_m1 for 40 steps w/ input size (3, 224, 224) and batch size 256.
Infer [8/40]. 14012.86 samples/sec. 18.269 ms/step.
Infer [16/40]. 13997.34 samples/sec. 18.289 ms/step.
Infer [24/40]. 13989.02 samples/sec. 18.300 ms/step.
Infer [32/40]. 13987.49 samples/sec. 18.302 ms/step.
Infer [40/40]. 13940.86 samples/sec. 18.363 ms/step.
Inference benchmark of simplenetv1_5m_m1 done. 13934.46 samples/sec, 18.36 ms/step
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='vgg19_bn', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='resnet18', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='resnet34', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
args: Namespace(model_list='jenkins_list_short.txt', bench='inference', detail=False, results_file='infer_results_jenkins.csv', num_warm_iter=10, num_bench_iter=40, model='simplenetv1_5m_m1', batch_size=256, img_size=None, input_size=None, use_train_size=False, num_classes=None, gp=None, channels_last=True, grad_checkpointing=False, amp=False, precision='float32', torchscript=False, fuser='', opt='sgd', opt_eps=None, opt_betas=None, momentum=0.9, weight_decay=0.0001, clip_grad=None, clip_mode='norm', smoothing=0.1, drop=0.0, drop_path=None, drop_block=None)
--result
[
    {
        "model": "simplenetv1_5m_m1",
        "infer_samples_per_sec": 13934.46,
        "infer_step_time": 18.363,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 5.75
    },
    {
        "model": "resnet18",
        "infer_samples_per_sec": 10595.36,
        "infer_step_time": 24.153,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 11.69
    },
    {
        "model": "resnet34",
        "infer_samples_per_sec": 6437.65,
        "infer_step_time": 39.757,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 21.8
    },
    {
        "model": "vgg19_bn",
        "infer_samples_per_sec": 1422.56,
        "infer_step_time": 179.938,
        "infer_batch_size": 256,
        "infer_img_size": 224,
        "param_count": 143.68
    }
]
Pytorch test completed in 62.167 secs

[SSH] completed
[SSH] exit-status: 0

[workspace] $ /bin/sh -xe /tmp/jenkins911939070746984709.sh
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_infer/time.txt' /var/lib/jenkins/jobs/pytorch_infer/workspace
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_infer/infer_results_jenkins.csv' /var/lib/jenkins/jobs/pytorch_infer/workspace
Recording plot data
Saving plot series data from: /var/lib/jenkins/jobs/pytorch_infer/workspace/time.txt
Finished: SUCCESS