Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84643 queued and waiting for resources srun: job 84643 has been allocated resources Running benchmark on hydro02 Epoch [1/64], Step [100/600], Loss: 0.1639 Epoch [1/64], Step [200/600], Loss: 0.0973 Epoch [1/64], Step [300/600], Loss: 0.1089 Epoch [1/64], Step [400/600], Loss: 0.0366 Epoch [1/64], Step [500/600], Loss: 0.1034 Epoch [1/64], Step [600/600], Loss: 0.0687 Epoch [2/64], Step [100/600], Loss: 0.0671 Epoch [2/64], Step [200/600], Loss: 0.0111 Epoch [2/64], Step [300/600], Loss: 0.0614 Epoch [2/64], Step [400/600], Loss: 0.0394 Epoch [2/64], Step [500/600], Loss: 0.0865 Epoch [2/64], Step [600/600], Loss: 0.0135 Epoch [3/64], Step [100/600], Loss: 0.0398 Epoch [3/64], Step [200/600], Loss: 0.2014 Epoch [3/64], Step [300/600], Loss: 0.0167 Epoch [3/64], Step [400/600], Loss: 0.0285 Epoch [3/64], Step [500/600], Loss: 0.0314 Epoch [3/64], Step [600/600], Loss: 0.0493 Epoch [4/64], Step [100/600], Loss: 0.0049 Epoch [4/64], Step [200/600], Loss: 0.0368 Epoch [4/64], Step [300/600], Loss: 0.0430 Epoch [4/64], Step [400/600], Loss: 0.0156 Epoch [4/64], Step [500/600], Loss: 0.0251 Epoch [4/64], Step [600/600], Loss: 0.0688 Epoch [5/64], Step [100/600], Loss: 0.0423 Epoch [5/64], Step [200/600], Loss: 0.0106 Epoch [5/64], Step [300/600], Loss: 0.0506 Epoch [5/64], Step [400/600], Loss: 0.0082 Epoch [5/64], Step [500/600], Loss: 0.0466 Epoch [5/64], Step [600/600], Loss: 0.0145 Epoch [6/64], Step [100/600], Loss: 0.0188 Epoch [6/64], Step [200/600], Loss: 0.0617 Epoch [6/64], Step [300/600], Loss: 0.0049 Epoch [6/64], Step [400/600], Loss: 0.0040 Epoch [6/64], Step [500/600], Loss: 0.0232 Epoch [6/64], Step [600/600], Loss: 0.0165 Epoch [7/64], Step [100/600], Loss: 0.0052 Epoch [7/64], Step [200/600], Loss: 0.0151 Epoch [7/64], Step [300/600], Loss: 0.0319 Epoch [7/64], Step [400/600], Loss: 0.0198 Epoch [7/64], Step [500/600], Loss: 0.0022 Epoch [7/64], Step [600/600], Loss: 0.0234 Epoch [8/64], Step [100/600], Loss: 0.0135 Epoch [8/64], Step [200/600], Loss: 0.0046 Epoch [8/64], Step [300/600], Loss: 0.0038 Epoch [8/64], Step [400/600], Loss: 0.0122 Epoch [8/64], Step [500/600], Loss: 0.0170 Epoch [8/64], Step [600/600], Loss: 0.0562 Epoch [9/64], Step [100/600], Loss: 0.0008 Epoch [9/64], Step [200/600], Loss: 0.0196 Epoch [9/64], Step [300/600], Loss: 0.0011 Epoch [9/64], Step [400/600], Loss: 0.0129 Epoch [9/64], Step [500/600], Loss: 0.0029 Epoch [9/64], Step [600/600], Loss: 0.0183 Epoch [10/64], Step [100/600], Loss: 0.0029 Epoch [10/64], Step [200/600], Loss: 0.0003 Epoch [10/64], Step [300/600], Loss: 0.0207 Epoch [10/64], Step [400/600], Loss: 0.0079 Epoch [10/64], Step [500/600], Loss: 0.0318 Epoch [10/64], Step [600/600], Loss: 0.0111 Epoch [11/64], Step [100/600], Loss: 0.0052 Epoch [11/64], Step [200/600], Loss: 0.0019 Epoch [11/64], Step [300/600], Loss: 0.0120 Epoch [11/64], Step [400/600], Loss: 0.0013 Epoch [11/64], Step [500/600], Loss: 0.0014 Epoch [11/64], Step [600/600], Loss: 0.0193 Epoch [12/64], Step [100/600], Loss: 0.0050 Epoch [12/64], Step [200/600], Loss: 0.0419 Epoch [12/64], Step [300/600], Loss: 0.0036 Epoch [12/64], Step [400/600], Loss: 0.0011 Epoch [12/64], Step [500/600], Loss: 0.0059 Epoch [12/64], Step [600/600], Loss: 0.0154 Epoch [13/64], Step [100/600], Loss: 0.0008 Epoch [13/64], Step [200/600], Loss: 0.0016 Epoch [13/64], Step [300/600], Loss: 0.0170 Epoch [13/64], Step [400/600], Loss: 0.0016 Epoch [13/64], Step [500/600], Loss: 0.0189 Epoch [13/64], Step [600/600], Loss: 0.0012 Epoch [14/64], Step [100/600], Loss: 0.0139 Epoch [14/64], Step [200/600], Loss: 0.0054 Epoch [14/64], Step [300/600], Loss: 0.0089 Epoch [14/64], Step [400/600], Loss: 0.0046 Epoch [14/64], Step [500/600], Loss: 0.0038 Epoch [14/64], Step [600/600], Loss: 0.0038 Epoch [15/64], Step [100/600], Loss: 0.0007 Epoch [15/64], Step [200/600], Loss: 0.0071 Epoch [15/64], Step [300/600], Loss: 0.0048 Epoch [15/64], Step [400/600], Loss: 0.0024 Epoch [15/64], Step [500/600], Loss: 0.0049 Epoch [15/64], Step [600/600], Loss: 0.0005 Epoch [16/64], Step [100/600], Loss: 0.0019 Epoch [16/64], Step [200/600], Loss: 0.0035 Epoch [16/64], Step [300/600], Loss: 0.0022 Epoch [16/64], Step [400/600], Loss: 0.0004 Epoch [16/64], Step [500/600], Loss: 0.0049 Epoch [16/64], Step [600/600], Loss: 0.0032 Epoch [17/64], Step [100/600], Loss: 0.0018 Epoch [17/64], Step [200/600], Loss: 0.0240 Epoch [17/64], Step [300/600], Loss: 0.0172 Epoch [17/64], Step [400/600], Loss: 0.0009 Epoch [17/64], Step [500/600], Loss: 0.0017 Epoch [17/64], Step [600/600], Loss: 0.0038 Epoch [18/64], Step [100/600], Loss: 0.0000 Epoch [18/64], Step [200/600], Loss: 0.0007 Epoch [18/64], Step [300/600], Loss: 0.0079 Epoch [18/64], Step [400/600], Loss: 0.0002 Epoch [18/64], Step [500/600], Loss: 0.0141 Epoch [18/64], Step [600/600], Loss: 0.0037 Epoch [19/64], Step [100/600], Loss: 0.0034 Epoch [19/64], Step [200/600], Loss: 0.0001 Epoch [19/64], Step [300/600], Loss: 0.0006 Epoch [19/64], Step [400/600], Loss: 0.0128 Epoch [19/64], Step [500/600], Loss: 0.0015 Epoch [19/64], Step [600/600], Loss: 0.0001 Epoch [20/64], Step [100/600], Loss: 0.0196 Epoch [20/64], Step [200/600], Loss: 0.0002 Epoch [20/64], Step [300/600], Loss: 0.0006 Epoch [20/64], Step [400/600], Loss: 0.0023 Epoch [20/64], Step [500/600], Loss: 0.0004 Epoch [20/64], Step [600/600], Loss: 0.0218 Epoch [21/64], Step [100/600], Loss: 0.0034 Epoch [21/64], Step [200/600], Loss: 0.0031 Epoch [21/64], Step [300/600], Loss: 0.0091 Epoch [21/64], Step [400/600], Loss: 0.0005 Epoch [21/64], Step [500/600], Loss: 0.0015 Epoch [21/64], Step [600/600], Loss: 0.0005 Epoch [22/64], Step [100/600], Loss: 0.0007 Epoch [22/64], Step [200/600], Loss: 0.0000 Epoch [22/64], Step [300/600], Loss: 0.0002 Epoch [22/64], Step [400/600], Loss: 0.0022 Epoch [22/64], Step [500/600], Loss: 0.0240 Epoch [22/64], Step [600/600], Loss: 0.0006 Epoch [23/64], Step [100/600], Loss: 0.0008 Epoch [23/64], Step [200/600], Loss: 0.0010 Epoch [23/64], Step [300/600], Loss: 0.0017 Epoch [23/64], Step [400/600], Loss: 0.0027 Epoch [23/64], Step [500/600], Loss: 0.0001 Epoch [23/64], Step [600/600], Loss: 0.0009 Epoch [24/64], Step [100/600], Loss: 0.0002 Epoch [24/64], Step [200/600], Loss: 0.0012 Epoch [24/64], Step [300/600], Loss: 0.0018 Epoch [24/64], Step [400/600], Loss: 0.0002 Epoch [24/64], Step [500/600], Loss: 0.0125 Epoch [24/64], Step [600/600], Loss: 0.0031 Epoch [25/64], Step [100/600], Loss: 0.0010 Epoch [25/64], Step [200/600], Loss: 0.0000 Epoch [25/64], Step [300/600], Loss: 0.0004 Epoch [25/64], Step [400/600], Loss: 0.0008 Epoch [25/64], Step [500/600], Loss: 0.0040 Epoch [25/64], Step [600/600], Loss: 0.0022 Epoch [26/64], Step [100/600], Loss: 0.0000 Epoch [26/64], Step [200/600], Loss: 0.0104 Epoch [26/64], Step [300/600], Loss: 0.0001 Epoch [26/64], Step [400/600], Loss: 0.0029 Epoch [26/64], Step [500/600], Loss: 0.0001 Epoch [26/64], Step [600/600], Loss: 0.0011 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0011 Epoch [27/64], Step [300/600], Loss: 0.0004 Epoch [27/64], Step [400/600], Loss: 0.0000 Epoch [27/64], Step [500/600], Loss: 0.0001 Epoch [27/64], Step [600/600], Loss: 0.0013 Epoch [28/64], Step [100/600], Loss: 0.0000 Epoch [28/64], Step [200/600], Loss: 0.0004 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0000 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0001 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0013 Epoch [30/64], Step [400/600], Loss: 0.0345 Epoch [30/64], Step [500/600], Loss: 0.0049 Epoch [30/64], Step [600/600], Loss: 0.0006 Epoch [31/64], Step [100/600], Loss: 0.0011 Epoch [31/64], Step [200/600], Loss: 0.0007 Epoch [31/64], Step [300/600], Loss: 0.0034 Epoch [31/64], Step [400/600], Loss: 0.0014 Epoch [31/64], Step [500/600], Loss: 0.0023 Epoch [31/64], Step [600/600], Loss: 0.0371 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0121 Epoch [32/64], Step [300/600], Loss: 0.0015 Epoch [32/64], Step [400/600], Loss: 0.0002 Epoch [32/64], Step [500/600], Loss: 0.0016 Epoch [32/64], Step [600/600], Loss: 0.0023 Epoch [33/64], Step [100/600], Loss: 0.0004 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0000 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0008 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0003 Epoch [34/64], Step [300/600], Loss: 0.0005 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0000 Epoch [35/64], Step [200/600], Loss: 0.0003 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0002 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0002 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0003 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0335 Epoch [38/64], Step [500/600], Loss: 0.0443 Epoch [38/64], Step [600/600], Loss: 0.0003 Epoch [39/64], Step [100/600], Loss: 0.0023 Epoch [39/64], Step [200/600], Loss: 0.0014 Epoch [39/64], Step [300/600], Loss: 0.0018 Epoch [39/64], Step [400/600], Loss: 0.0004 Epoch [39/64], Step [500/600], Loss: 0.0012 Epoch [39/64], Step [600/600], Loss: 0.0003 Epoch [40/64], Step [100/600], Loss: 0.0004 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0003 Epoch [40/64], Step [400/600], Loss: 0.0006 Epoch [40/64], Step [500/600], Loss: 0.0004 Epoch [40/64], Step [600/600], Loss: 0.0003 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0003 Epoch [44/64], Step [500/600], Loss: 0.0002 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0002 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0002 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0003 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0005 Epoch [49/64], Step [400/600], Loss: 0.0012 Epoch [49/64], Step [500/600], Loss: 0.0003 Epoch [49/64], Step [600/600], Loss: 0.0004 Epoch [50/64], Step [100/600], Loss: 0.0006 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0002 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0003 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0003 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0016 Epoch [52/64], Step [500/600], Loss: 0.0004 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0002 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0001 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0001 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0004 Epoch [60/64], Step [100/600], Loss: 0.0226 Epoch [60/64], Step [200/600], Loss: 0.0008 Epoch [60/64], Step [300/600], Loss: 0.0595 Epoch [60/64], Step [400/600], Loss: 0.0002 Epoch [60/64], Step [500/600], Loss: 0.0006 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0001 Epoch [61/64], Step [200/600], Loss: 0.0005 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0007 Epoch [61/64], Step [500/600], Loss: 0.0004 Epoch [61/64], Step [600/600], Loss: 0.0004 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0002 Epoch [62/64], Step [400/600], Loss: 0.0003 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0002 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0004 Epoch [63/64], Step [600/600], Loss: 0.0001 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0003 Epoch [64/64], Step [300/600], Loss: 0.0001 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 432.578 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins17322947810811648870.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS