Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96812 queued and waiting for resources srun: job 96812 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2450 Epoch [1/64], Step [200/600], Loss: 0.1146 Epoch [1/64], Step [300/600], Loss: 0.0531 Epoch [1/64], Step [400/600], Loss: 0.0892 Epoch [1/64], Step [500/600], Loss: 0.0914 Epoch [1/64], Step [600/600], Loss: 0.0482 Epoch [2/64], Step [100/600], Loss: 0.0308 Epoch [2/64], Step [200/600], Loss: 0.0362 Epoch [2/64], Step [300/600], Loss: 0.0518 Epoch [2/64], Step [400/600], Loss: 0.0148 Epoch [2/64], Step [500/600], Loss: 0.0237 Epoch [2/64], Step [600/600], Loss: 0.0061 Epoch [3/64], Step [100/600], Loss: 0.0178 Epoch [3/64], Step [200/600], Loss: 0.0681 Epoch [3/64], Step [300/600], Loss: 0.0135 Epoch [3/64], Step [400/600], Loss: 0.0322 Epoch [3/64], Step [500/600], Loss: 0.0263 Epoch [3/64], Step [600/600], Loss: 0.0510 Epoch [4/64], Step [100/600], Loss: 0.0510 Epoch [4/64], Step [200/600], Loss: 0.0145 Epoch [4/64], Step [300/600], Loss: 0.0282 Epoch [4/64], Step [400/600], Loss: 0.0087 Epoch [4/64], Step [500/600], Loss: 0.0452 Epoch [4/64], Step [600/600], Loss: 0.0639 Epoch [5/64], Step [100/600], Loss: 0.0130 Epoch [5/64], Step [200/600], Loss: 0.0145 Epoch [5/64], Step [300/600], Loss: 0.0391 Epoch [5/64], Step [400/600], Loss: 0.0050 Epoch [5/64], Step [500/600], Loss: 0.0335 Epoch [5/64], Step [600/600], Loss: 0.0068 Epoch [6/64], Step [100/600], Loss: 0.0545 Epoch [6/64], Step [200/600], Loss: 0.0157 Epoch [6/64], Step [300/600], Loss: 0.0075 Epoch [6/64], Step [400/600], Loss: 0.0114 Epoch [6/64], Step [500/600], Loss: 0.0102 Epoch [6/64], Step [600/600], Loss: 0.0387 Epoch [7/64], Step [100/600], Loss: 0.0089 Epoch [7/64], Step [200/600], Loss: 0.0365 Epoch [7/64], Step [300/600], Loss: 0.0207 Epoch [7/64], Step [400/600], Loss: 0.0209 Epoch [7/64], Step [500/600], Loss: 0.0432 Epoch [7/64], Step [600/600], Loss: 0.0306 Epoch [8/64], Step [100/600], Loss: 0.0032 Epoch [8/64], Step [200/600], Loss: 0.0109 Epoch [8/64], Step [300/600], Loss: 0.0211 Epoch [8/64], Step [400/600], Loss: 0.0044 Epoch [8/64], Step [500/600], Loss: 0.0432 Epoch [8/64], Step [600/600], Loss: 0.0299 Epoch [9/64], Step [100/600], Loss: 0.0032 Epoch [9/64], Step [200/600], Loss: 0.0049 Epoch [9/64], Step [300/600], Loss: 0.0028 Epoch [9/64], Step [400/600], Loss: 0.0160 Epoch [9/64], Step [500/600], Loss: 0.0016 Epoch [9/64], Step [600/600], Loss: 0.0170 Epoch [10/64], Step [100/600], Loss: 0.0026 Epoch [10/64], Step [200/600], Loss: 0.0010 Epoch [10/64], Step [300/600], Loss: 0.0227 Epoch [10/64], Step [400/600], Loss: 0.0340 Epoch [10/64], Step [500/600], Loss: 0.0032 Epoch [10/64], Step [600/600], Loss: 0.0026 Epoch [11/64], Step [100/600], Loss: 0.0051 Epoch [11/64], Step [200/600], Loss: 0.0006 Epoch [11/64], Step [300/600], Loss: 0.0003 Epoch [11/64], Step [400/600], Loss: 0.0012 Epoch [11/64], Step [500/600], Loss: 0.0048 Epoch [11/64], Step [600/600], Loss: 0.0091 Epoch [12/64], Step [100/600], Loss: 0.0014 Epoch [12/64], Step [200/600], Loss: 0.0131 Epoch [12/64], Step [300/600], Loss: 0.0107 Epoch [12/64], Step [400/600], Loss: 0.0007 Epoch [12/64], Step [500/600], Loss: 0.0055 Epoch [12/64], Step [600/600], Loss: 0.0102 Epoch [13/64], Step [100/600], Loss: 0.0029 Epoch [13/64], Step [200/600], Loss: 0.0023 Epoch [13/64], Step [300/600], Loss: 0.0149 Epoch [13/64], Step [400/600], Loss: 0.0009 Epoch [13/64], Step [500/600], Loss: 0.0140 Epoch [13/64], Step [600/600], Loss: 0.0032 Epoch [14/64], Step [100/600], Loss: 0.0004 Epoch [14/64], Step [200/600], Loss: 0.0017 Epoch [14/64], Step [300/600], Loss: 0.0257 Epoch [14/64], Step [400/600], Loss: 0.0022 Epoch [14/64], Step [500/600], Loss: 0.0544 Epoch [14/64], Step [600/600], Loss: 0.0006 Epoch [15/64], Step [100/600], Loss: 0.0011 Epoch [15/64], Step [200/600], Loss: 0.0237 Epoch [15/64], Step [300/600], Loss: 0.0036 Epoch [15/64], Step [400/600], Loss: 0.0002 Epoch [15/64], Step [500/600], Loss: 0.0245 Epoch [15/64], Step [600/600], Loss: 0.0010 Epoch [16/64], Step [100/600], Loss: 0.0022 Epoch [16/64], Step [200/600], Loss: 0.0009 Epoch [16/64], Step [300/600], Loss: 0.0024 Epoch [16/64], Step [400/600], Loss: 0.0006 Epoch [16/64], Step [500/600], Loss: 0.0006 Epoch [16/64], Step [600/600], Loss: 0.0036 Epoch [17/64], Step [100/600], Loss: 0.0025 Epoch [17/64], Step [200/600], Loss: 0.0012 Epoch [17/64], Step [300/600], Loss: 0.0017 Epoch [17/64], Step [400/600], Loss: 0.0010 Epoch [17/64], Step [500/600], Loss: 0.0009 Epoch [17/64], Step [600/600], Loss: 0.0040 Epoch [18/64], Step [100/600], Loss: 0.0150 Epoch [18/64], Step [200/600], Loss: 0.0157 Epoch [18/64], Step [300/600], Loss: 0.0003 Epoch [18/64], Step [400/600], Loss: 0.0016 Epoch [18/64], Step [500/600], Loss: 0.0004 Epoch [18/64], Step [600/600], Loss: 0.0196 Epoch [19/64], Step [100/600], Loss: 0.0011 Epoch [19/64], Step [200/600], Loss: 0.0038 Epoch [19/64], Step [300/600], Loss: 0.0030 Epoch [19/64], Step [400/600], Loss: 0.0036 Epoch [19/64], Step [500/600], Loss: 0.0122 Epoch [19/64], Step [600/600], Loss: 0.0012 Epoch [20/64], Step [100/600], Loss: 0.0024 Epoch [20/64], Step [200/600], Loss: 0.0038 Epoch [20/64], Step [300/600], Loss: 0.0032 Epoch [20/64], Step [400/600], Loss: 0.0038 Epoch [20/64], Step [500/600], Loss: 0.0055 Epoch [20/64], Step [600/600], Loss: 0.0004 Epoch [21/64], Step [100/600], Loss: 0.0005 Epoch [21/64], Step [200/600], Loss: 0.0034 Epoch [21/64], Step [300/600], Loss: 0.0005 Epoch [21/64], Step [400/600], Loss: 0.0001 Epoch [21/64], Step [500/600], Loss: 0.0000 Epoch [21/64], Step [600/600], Loss: 0.0032 Epoch [22/64], Step [100/600], Loss: 0.0105 Epoch [22/64], Step [200/600], Loss: 0.0026 Epoch [22/64], Step [300/600], Loss: 0.0002 Epoch [22/64], Step [400/600], Loss: 0.0002 Epoch [22/64], Step [500/600], Loss: 0.0004 Epoch [22/64], Step [600/600], Loss: 0.0042 Epoch [23/64], Step [100/600], Loss: 0.0011 Epoch [23/64], Step [200/600], Loss: 0.0018 Epoch [23/64], Step [300/600], Loss: 0.0064 Epoch [23/64], Step [400/600], Loss: 0.0033 Epoch [23/64], Step [500/600], Loss: 0.0033 Epoch [23/64], Step [600/600], Loss: 0.0078 Epoch [24/64], Step [100/600], Loss: 0.0002 Epoch [24/64], Step [200/600], Loss: 0.0002 Epoch [24/64], Step [300/600], Loss: 0.0108 Epoch [24/64], Step [400/600], Loss: 0.0027 Epoch [24/64], Step [500/600], Loss: 0.0007 Epoch [24/64], Step [600/600], Loss: 0.0085 Epoch [25/64], Step [100/600], Loss: 0.0042 Epoch [25/64], Step [200/600], Loss: 0.0014 Epoch [25/64], Step [300/600], Loss: 0.0015 Epoch [25/64], Step [400/600], Loss: 0.0018 Epoch [25/64], Step [500/600], Loss: 0.0007 Epoch [25/64], Step [600/600], Loss: 0.0001 Epoch [26/64], Step [100/600], Loss: 0.0001 Epoch [26/64], Step [200/600], Loss: 0.0010 Epoch [26/64], Step [300/600], Loss: 0.0002 Epoch [26/64], Step [400/600], Loss: 0.0018 Epoch [26/64], Step [500/600], Loss: 0.0002 Epoch [26/64], Step [600/600], Loss: 0.0003 Epoch [27/64], Step [100/600], Loss: 0.0002 Epoch [27/64], Step [200/600], Loss: 0.0001 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0001 Epoch [27/64], Step [600/600], Loss: 0.0003 Epoch [28/64], Step [100/600], Loss: 0.0001 Epoch [28/64], Step [200/600], Loss: 0.0004 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0001 Epoch [29/64], Step [100/600], Loss: 0.0002 Epoch [29/64], Step [200/600], Loss: 0.0000 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0000 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0000 Epoch [30/64], Step [200/600], Loss: 0.0000 Epoch [30/64], Step [300/600], Loss: 0.0003 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0000 Epoch [30/64], Step [600/600], Loss: 0.0002 Epoch [31/64], Step [100/600], Loss: 0.0003 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0002 Epoch [31/64], Step [500/600], Loss: 0.0003 Epoch [31/64], Step [600/600], Loss: 0.0000 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0040 Epoch [33/64], Step [100/600], Loss: 0.0059 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0013 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0000 Epoch [33/64], Step [600/600], Loss: 0.0088 Epoch [34/64], Step [100/600], Loss: 0.0002 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0016 Epoch [34/64], Step [400/600], Loss: 0.0003 Epoch [34/64], Step [500/600], Loss: 0.0000 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0007 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0008 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0003 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0004 Epoch [36/64], Step [400/600], Loss: 0.0001 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0002 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0002 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0003 Epoch [43/64], Step [500/600], Loss: 0.0031 Epoch [43/64], Step [600/600], Loss: 0.0260 Epoch [44/64], Step [100/600], Loss: 0.0002 Epoch [44/64], Step [200/600], Loss: 0.0019 Epoch [44/64], Step [300/600], Loss: 0.0538 Epoch [44/64], Step [400/600], Loss: 0.0002 Epoch [44/64], Step [500/600], Loss: 0.0055 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0094 Epoch [45/64], Step [400/600], Loss: 0.0003 Epoch [45/64], Step [500/600], Loss: 0.0010 Epoch [45/64], Step [600/600], Loss: 0.0037 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0018 Epoch [46/64], Step [300/600], Loss: 0.0004 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0002 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0000 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0004 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0002 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0002 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0002 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0002 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0002 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0003 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0001 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.1241 Epoch [56/64], Step [100/600], Loss: 0.0013 Epoch [56/64], Step [200/600], Loss: 0.0033 Epoch [56/64], Step [300/600], Loss: 0.0008 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0010 Epoch [56/64], Step [600/600], Loss: 0.0003 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0008 Epoch [57/64], Step [300/600], Loss: 0.0006 Epoch [57/64], Step [400/600], Loss: 0.0041 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0002 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0010 Epoch [58/64], Step [300/600], Loss: 0.0001 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0004 Epoch [60/64], Step [100/600], Loss: 0.0002 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0001 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0002 Epoch [61/64], Step [500/600], Loss: 0.0001 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0002 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 435.423 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins310200309064804945.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS