Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 83997 queued and waiting for resources srun: job 83997 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.1913 Epoch [1/64], Step [200/600], Loss: 0.1957 Epoch [1/64], Step [300/600], Loss: 0.1476 Epoch [1/64], Step [400/600], Loss: 0.1008 Epoch [1/64], Step [500/600], Loss: 0.0702 Epoch [1/64], Step [600/600], Loss: 0.0295 Epoch [2/64], Step [100/600], Loss: 0.0491 Epoch [2/64], Step [200/600], Loss: 0.0470 Epoch [2/64], Step [300/600], Loss: 0.0118 Epoch [2/64], Step [400/600], Loss: 0.0635 Epoch [2/64], Step [500/600], Loss: 0.1044 Epoch [2/64], Step [600/600], Loss: 0.0253 Epoch [3/64], Step [100/600], Loss: 0.0199 Epoch [3/64], Step [200/600], Loss: 0.0309 Epoch [3/64], Step [300/600], Loss: 0.0286 Epoch [3/64], Step [400/600], Loss: 0.0427 Epoch [3/64], Step [500/600], Loss: 0.0749 Epoch [3/64], Step [600/600], Loss: 0.0346 Epoch [4/64], Step [100/600], Loss: 0.0242 Epoch [4/64], Step [200/600], Loss: 0.0326 Epoch [4/64], Step [300/600], Loss: 0.0325 Epoch [4/64], Step [400/600], Loss: 0.0292 Epoch [4/64], Step [500/600], Loss: 0.0478 Epoch [4/64], Step [600/600], Loss: 0.0405 Epoch [5/64], Step [100/600], Loss: 0.0147 Epoch [5/64], Step [200/600], Loss: 0.0221 Epoch [5/64], Step [300/600], Loss: 0.0088 Epoch [5/64], Step [400/600], Loss: 0.0048 Epoch [5/64], Step [500/600], Loss: 0.0457 Epoch [5/64], Step [600/600], Loss: 0.0755 Epoch [6/64], Step [100/600], Loss: 0.0091 Epoch [6/64], Step [200/600], Loss: 0.0148 Epoch [6/64], Step [300/600], Loss: 0.0123 Epoch [6/64], Step [400/600], Loss: 0.0106 Epoch [6/64], Step [500/600], Loss: 0.0211 Epoch [6/64], Step [600/600], Loss: 0.0325 Epoch [7/64], Step [100/600], Loss: 0.0111 Epoch [7/64], Step [200/600], Loss: 0.0103 Epoch [7/64], Step [300/600], Loss: 0.0038 Epoch [7/64], Step [400/600], Loss: 0.0280 Epoch [7/64], Step [500/600], Loss: 0.0724 Epoch [7/64], Step [600/600], Loss: 0.0118 Epoch [8/64], Step [100/600], Loss: 0.0041 Epoch [8/64], Step [200/600], Loss: 0.0116 Epoch [8/64], Step [300/600], Loss: 0.0267 Epoch [8/64], Step [400/600], Loss: 0.0051 Epoch [8/64], Step [500/600], Loss: 0.0037 Epoch [8/64], Step [600/600], Loss: 0.0054 Epoch [9/64], Step [100/600], Loss: 0.0019 Epoch [9/64], Step [200/600], Loss: 0.0067 Epoch [9/64], Step [300/600], Loss: 0.0290 Epoch [9/64], Step [400/600], Loss: 0.0168 Epoch [9/64], Step [500/600], Loss: 0.0157 Epoch [9/64], Step [600/600], Loss: 0.0128 Epoch [10/64], Step [100/600], Loss: 0.0051 Epoch [10/64], Step [200/600], Loss: 0.0067 Epoch [10/64], Step [300/600], Loss: 0.0052 Epoch [10/64], Step [400/600], Loss: 0.0107 Epoch [10/64], Step [500/600], Loss: 0.0050 Epoch [10/64], Step [600/600], Loss: 0.0018 Epoch [11/64], Step [100/600], Loss: 0.0016 Epoch [11/64], Step [200/600], Loss: 0.0512 Epoch [11/64], Step [300/600], Loss: 0.0125 Epoch [11/64], Step [400/600], Loss: 0.0052 Epoch [11/64], Step [500/600], Loss: 0.0493 Epoch [11/64], Step [600/600], Loss: 0.0009 Epoch [12/64], Step [100/600], Loss: 0.0039 Epoch [12/64], Step [200/600], Loss: 0.0014 Epoch [12/64], Step [300/600], Loss: 0.0006 Epoch [12/64], Step [400/600], Loss: 0.0076 Epoch [12/64], Step [500/600], Loss: 0.0036 Epoch [12/64], Step [600/600], Loss: 0.0009 Epoch [13/64], Step [100/600], Loss: 0.0024 Epoch [13/64], Step [200/600], Loss: 0.0012 Epoch [13/64], Step [300/600], Loss: 0.0060 Epoch [13/64], Step [400/600], Loss: 0.0159 Epoch [13/64], Step [500/600], Loss: 0.0196 Epoch [13/64], Step [600/600], Loss: 0.0028 Epoch [14/64], Step [100/600], Loss: 0.0026 Epoch [14/64], Step [200/600], Loss: 0.0007 Epoch [14/64], Step [300/600], Loss: 0.0035 Epoch [14/64], Step [400/600], Loss: 0.0103 Epoch [14/64], Step [500/600], Loss: 0.0042 Epoch [14/64], Step [600/600], Loss: 0.0069 Epoch [15/64], Step [100/600], Loss: 0.0015 Epoch [15/64], Step [200/600], Loss: 0.0022 Epoch [15/64], Step [300/600], Loss: 0.0033 Epoch [15/64], Step [400/600], Loss: 0.0048 Epoch [15/64], Step [500/600], Loss: 0.0013 Epoch [15/64], Step [600/600], Loss: 0.0020 Epoch [16/64], Step [100/600], Loss: 0.0026 Epoch [16/64], Step [200/600], Loss: 0.0090 Epoch [16/64], Step [300/600], Loss: 0.0009 Epoch [16/64], Step [400/600], Loss: 0.0076 Epoch [16/64], Step [500/600], Loss: 0.0015 Epoch [16/64], Step [600/600], Loss: 0.0007 Epoch [17/64], Step [100/600], Loss: 0.0018 Epoch [17/64], Step [200/600], Loss: 0.0003 Epoch [17/64], Step [300/600], Loss: 0.0195 Epoch [17/64], Step [400/600], Loss: 0.0076 Epoch [17/64], Step [500/600], Loss: 0.0224 Epoch [17/64], Step [600/600], Loss: 0.0062 Epoch [18/64], Step [100/600], Loss: 0.0017 Epoch [18/64], Step [200/600], Loss: 0.0036 Epoch [18/64], Step [300/600], Loss: 0.0006 Epoch [18/64], Step [400/600], Loss: 0.0013 Epoch [18/64], Step [500/600], Loss: 0.0009 Epoch [18/64], Step [600/600], Loss: 0.0003 Epoch [19/64], Step [100/600], Loss: 0.0002 Epoch [19/64], Step [200/600], Loss: 0.0023 Epoch [19/64], Step [300/600], Loss: 0.0098 Epoch [19/64], Step [400/600], Loss: 0.0001 Epoch [19/64], Step [500/600], Loss: 0.0009 Epoch [19/64], Step [600/600], Loss: 0.0009 Epoch [20/64], Step [100/600], Loss: 0.0010 Epoch [20/64], Step [200/600], Loss: 0.0080 Epoch [20/64], Step [300/600], Loss: 0.0031 Epoch [20/64], Step [400/600], Loss: 0.0022 Epoch [20/64], Step [500/600], Loss: 0.0187 Epoch [20/64], Step [600/600], Loss: 0.0058 Epoch [21/64], Step [100/600], Loss: 0.0131 Epoch [21/64], Step [200/600], Loss: 0.0003 Epoch [21/64], Step [300/600], Loss: 0.0163 Epoch [21/64], Step [400/600], Loss: 0.0020 Epoch [21/64], Step [500/600], Loss: 0.0003 Epoch [21/64], Step [600/600], Loss: 0.0006 Epoch [22/64], Step [100/600], Loss: 0.0004 Epoch [22/64], Step [200/600], Loss: 0.0001 Epoch [22/64], Step [300/600], Loss: 0.0019 Epoch [22/64], Step [400/600], Loss: 0.0018 Epoch [22/64], Step [500/600], Loss: 0.0012 Epoch [22/64], Step [600/600], Loss: 0.0078 Epoch [23/64], Step [100/600], Loss: 0.0072 Epoch [23/64], Step [200/600], Loss: 0.0007 Epoch [23/64], Step [300/600], Loss: 0.0029 Epoch [23/64], Step [400/600], Loss: 0.0164 Epoch [23/64], Step [500/600], Loss: 0.0007 Epoch [23/64], Step [600/600], Loss: 0.0077 Epoch [24/64], Step [100/600], Loss: 0.0016 Epoch [24/64], Step [200/600], Loss: 0.0013 Epoch [24/64], Step [300/600], Loss: 0.0022 Epoch [24/64], Step [400/600], Loss: 0.0004 Epoch [24/64], Step [500/600], Loss: 0.0001 Epoch [24/64], Step [600/600], Loss: 0.0002 Epoch [25/64], Step [100/600], Loss: 0.0004 Epoch [25/64], Step [200/600], Loss: 0.0036 Epoch [25/64], Step [300/600], Loss: 0.0005 Epoch [25/64], Step [400/600], Loss: 0.0607 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0002 Epoch [26/64], Step [100/600], Loss: 0.0003 Epoch [26/64], Step [200/600], Loss: 0.0017 Epoch [26/64], Step [300/600], Loss: 0.0005 Epoch [26/64], Step [400/600], Loss: 0.0002 Epoch [26/64], Step [500/600], Loss: 0.0007 Epoch [26/64], Step [600/600], Loss: 0.0005 Epoch [27/64], Step [100/600], Loss: 0.0015 Epoch [27/64], Step [200/600], Loss: 0.0000 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0007 Epoch [27/64], Step [600/600], Loss: 0.0014 Epoch [28/64], Step [100/600], Loss: 0.0025 Epoch [28/64], Step [200/600], Loss: 0.0002 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0092 Epoch [28/64], Step [500/600], Loss: 0.0178 Epoch [28/64], Step [600/600], Loss: 0.0006 Epoch [29/64], Step [100/600], Loss: 0.0006 Epoch [29/64], Step [200/600], Loss: 0.0006 Epoch [29/64], Step [300/600], Loss: 0.0043 Epoch [29/64], Step [400/600], Loss: 0.0053 Epoch [29/64], Step [500/600], Loss: 0.0061 Epoch [29/64], Step [600/600], Loss: 0.0016 Epoch [30/64], Step [100/600], Loss: 0.0002 Epoch [30/64], Step [200/600], Loss: 0.0008 Epoch [30/64], Step [300/600], Loss: 0.0003 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0053 Epoch [30/64], Step [600/600], Loss: 0.0006 Epoch [31/64], Step [100/600], Loss: 0.0002 Epoch [31/64], Step [200/600], Loss: 0.0000 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0004 Epoch [31/64], Step [500/600], Loss: 0.0003 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0008 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0001 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0009 Epoch [33/64], Step [500/600], Loss: 0.0001 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0008 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0000 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0004 Epoch [35/64], Step [600/600], Loss: 0.0000 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0000 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0000 Epoch [37/64], Step [400/600], Loss: 0.0482 Epoch [37/64], Step [500/600], Loss: 0.0086 Epoch [37/64], Step [600/600], Loss: 0.0692 Epoch [38/64], Step [100/600], Loss: 0.0002 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0156 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0012 Epoch [38/64], Step [600/600], Loss: 0.0008 Epoch [39/64], Step [100/600], Loss: 0.0012 Epoch [39/64], Step [200/600], Loss: 0.0054 Epoch [39/64], Step [300/600], Loss: 0.0022 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0000 Epoch [41/64], Step [100/600], Loss: 0.0006 Epoch [41/64], Step [200/600], Loss: 0.0002 Epoch [41/64], Step [300/600], Loss: 0.0002 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0000 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0002 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0002 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.1054 Epoch [47/64], Step [600/600], Loss: 0.0058 Epoch [48/64], Step [100/600], Loss: 0.0326 Epoch [48/64], Step [200/600], Loss: 0.0008 Epoch [48/64], Step [300/600], Loss: 0.0022 Epoch [48/64], Step [400/600], Loss: 0.0008 Epoch [48/64], Step [500/600], Loss: 0.0088 Epoch [48/64], Step [600/600], Loss: 0.0011 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0001 Epoch [49/64], Step [300/600], Loss: 0.0013 Epoch [49/64], Step [400/600], Loss: 0.0011 Epoch [49/64], Step [500/600], Loss: 0.0015 Epoch [49/64], Step [600/600], Loss: 0.0010 Epoch [50/64], Step [100/600], Loss: 0.0002 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0002 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0004 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0002 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0002 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0002 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0398 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0150 Epoch [56/64], Step [600/600], Loss: 0.0001 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0030 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0003 Epoch [57/64], Step [500/600], Loss: 0.0084 Epoch [57/64], Step [600/600], Loss: 0.0008 Epoch [58/64], Step [100/600], Loss: 0.0004 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0003 Epoch [60/64], Step [100/600], Loss: 0.0003 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0001 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0001 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0002 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 458.085 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins9384679618245340133.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS