Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 84820 queued and waiting for resources srun: job 84820 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2515 Epoch [1/64], Step [200/600], Loss: 0.1069 Epoch [1/64], Step [300/600], Loss: 0.0861 Epoch [1/64], Step [400/600], Loss: 0.0495 Epoch [1/64], Step [500/600], Loss: 0.1021 Epoch [1/64], Step [600/600], Loss: 0.0877 Epoch [2/64], Step [100/600], Loss: 0.0634 Epoch [2/64], Step [200/600], Loss: 0.0414 Epoch [2/64], Step [300/600], Loss: 0.0610 Epoch [2/64], Step [400/600], Loss: 0.0185 Epoch [2/64], Step [500/600], Loss: 0.0179 Epoch [2/64], Step [600/600], Loss: 0.0394 Epoch [3/64], Step [100/600], Loss: 0.0174 Epoch [3/64], Step [200/600], Loss: 0.0166 Epoch [3/64], Step [300/600], Loss: 0.0802 Epoch [3/64], Step [400/600], Loss: 0.0272 Epoch [3/64], Step [500/600], Loss: 0.0139 Epoch [3/64], Step [600/600], Loss: 0.0852 Epoch [4/64], Step [100/600], Loss: 0.0302 Epoch [4/64], Step [200/600], Loss: 0.0320 Epoch [4/64], Step [300/600], Loss: 0.0082 Epoch [4/64], Step [400/600], Loss: 0.0074 Epoch [4/64], Step [500/600], Loss: 0.0306 Epoch [4/64], Step [600/600], Loss: 0.0386 Epoch [5/64], Step [100/600], Loss: 0.0388 Epoch [5/64], Step [200/600], Loss: 0.0068 Epoch [5/64], Step [300/600], Loss: 0.0163 Epoch [5/64], Step [400/600], Loss: 0.0245 Epoch [5/64], Step [500/600], Loss: 0.0082 Epoch [5/64], Step [600/600], Loss: 0.0632 Epoch [6/64], Step [100/600], Loss: 0.0573 Epoch [6/64], Step [200/600], Loss: 0.0082 Epoch [6/64], Step [300/600], Loss: 0.0151 Epoch [6/64], Step [400/600], Loss: 0.0035 Epoch [6/64], Step [500/600], Loss: 0.0089 Epoch [6/64], Step [600/600], Loss: 0.0083 Epoch [7/64], Step [100/600], Loss: 0.0697 Epoch [7/64], Step [200/600], Loss: 0.0212 Epoch [7/64], Step [300/600], Loss: 0.0204 Epoch [7/64], Step [400/600], Loss: 0.0084 Epoch [7/64], Step [500/600], Loss: 0.0148 Epoch [7/64], Step [600/600], Loss: 0.0206 Epoch [8/64], Step [100/600], Loss: 0.0163 Epoch [8/64], Step [200/600], Loss: 0.0024 Epoch [8/64], Step [300/600], Loss: 0.0494 Epoch [8/64], Step [400/600], Loss: 0.0278 Epoch [8/64], Step [500/600], Loss: 0.0081 Epoch [8/64], Step [600/600], Loss: 0.0054 Epoch [9/64], Step [100/600], Loss: 0.0103 Epoch [9/64], Step [200/600], Loss: 0.0083 Epoch [9/64], Step [300/600], Loss: 0.0056 Epoch [9/64], Step [400/600], Loss: 0.0035 Epoch [9/64], Step [500/600], Loss: 0.0403 Epoch [9/64], Step [600/600], Loss: 0.0324 Epoch [10/64], Step [100/600], Loss: 0.0038 Epoch [10/64], Step [200/600], Loss: 0.0138 Epoch [10/64], Step [300/600], Loss: 0.0044 Epoch [10/64], Step [400/600], Loss: 0.0021 Epoch [10/64], Step [500/600], Loss: 0.0065 Epoch [10/64], Step [600/600], Loss: 0.0031 Epoch [11/64], Step [100/600], Loss: 0.0046 Epoch [11/64], Step [200/600], Loss: 0.0061 Epoch [11/64], Step [300/600], Loss: 0.0039 Epoch [11/64], Step [400/600], Loss: 0.0035 Epoch [11/64], Step [500/600], Loss: 0.0008 Epoch [11/64], Step [600/600], Loss: 0.0066 Epoch [12/64], Step [100/600], Loss: 0.0054 Epoch [12/64], Step [200/600], Loss: 0.0313 Epoch [12/64], Step [300/600], Loss: 0.0437 Epoch [12/64], Step [400/600], Loss: 0.0399 Epoch [12/64], Step [500/600], Loss: 0.0016 Epoch [12/64], Step [600/600], Loss: 0.0017 Epoch [13/64], Step [100/600], Loss: 0.0044 Epoch [13/64], Step [200/600], Loss: 0.0080 Epoch [13/64], Step [300/600], Loss: 0.0137 Epoch [13/64], Step [400/600], Loss: 0.0019 Epoch [13/64], Step [500/600], Loss: 0.0270 Epoch [13/64], Step [600/600], Loss: 0.0012 Epoch [14/64], Step [100/600], Loss: 0.0042 Epoch [14/64], Step [200/600], Loss: 0.0007 Epoch [14/64], Step [300/600], Loss: 0.0028 Epoch [14/64], Step [400/600], Loss: 0.0025 Epoch [14/64], Step [500/600], Loss: 0.0135 Epoch [14/64], Step [600/600], Loss: 0.0080 Epoch [15/64], Step [100/600], Loss: 0.0050 Epoch [15/64], Step [200/600], Loss: 0.0032 Epoch [15/64], Step [300/600], Loss: 0.0111 Epoch [15/64], Step [400/600], Loss: 0.0082 Epoch [15/64], Step [500/600], Loss: 0.0030 Epoch [15/64], Step [600/600], Loss: 0.0003 Epoch [16/64], Step [100/600], Loss: 0.0023 Epoch [16/64], Step [200/600], Loss: 0.0108 Epoch [16/64], Step [300/600], Loss: 0.0023 Epoch [16/64], Step [400/600], Loss: 0.0050 Epoch [16/64], Step [500/600], Loss: 0.0044 Epoch [16/64], Step [600/600], Loss: 0.0022 Epoch [17/64], Step [100/600], Loss: 0.0014 Epoch [17/64], Step [200/600], Loss: 0.0085 Epoch [17/64], Step [300/600], Loss: 0.0004 Epoch [17/64], Step [400/600], Loss: 0.0012 Epoch [17/64], Step [500/600], Loss: 0.0009 Epoch [17/64], Step [600/600], Loss: 0.0418 Epoch [18/64], Step [100/600], Loss: 0.0090 Epoch [18/64], Step [200/600], Loss: 0.0014 Epoch [18/64], Step [300/600], Loss: 0.0100 Epoch [18/64], Step [400/600], Loss: 0.0006 Epoch [18/64], Step [500/600], Loss: 0.0017 Epoch [18/64], Step [600/600], Loss: 0.0008 Epoch [19/64], Step [100/600], Loss: 0.0004 Epoch [19/64], Step [200/600], Loss: 0.0128 Epoch [19/64], Step [300/600], Loss: 0.0008 Epoch [19/64], Step [400/600], Loss: 0.0011 Epoch [19/64], Step [500/600], Loss: 0.0003 Epoch [19/64], Step [600/600], Loss: 0.0031 Epoch [20/64], Step [100/600], Loss: 0.0001 Epoch [20/64], Step [200/600], Loss: 0.0326 Epoch [20/64], Step [300/600], Loss: 0.0001 Epoch [20/64], Step [400/600], Loss: 0.0524 Epoch [20/64], Step [500/600], Loss: 0.0004 Epoch [20/64], Step [600/600], Loss: 0.0095 Epoch [21/64], Step [100/600], Loss: 0.0004 Epoch [21/64], Step [200/600], Loss: 0.0023 Epoch [21/64], Step [300/600], Loss: 0.0005 Epoch [21/64], Step [400/600], Loss: 0.0026 Epoch [21/64], Step [500/600], Loss: 0.0001 Epoch [21/64], Step [600/600], Loss: 0.0022 Epoch [22/64], Step [100/600], Loss: 0.0001 Epoch [22/64], Step [200/600], Loss: 0.0004 Epoch [22/64], Step [300/600], Loss: 0.0044 Epoch [22/64], Step [400/600], Loss: 0.0013 Epoch [22/64], Step [500/600], Loss: 0.0182 Epoch [22/64], Step [600/600], Loss: 0.0008 Epoch [23/64], Step [100/600], Loss: 0.0003 Epoch [23/64], Step [200/600], Loss: 0.0002 Epoch [23/64], Step [300/600], Loss: 0.0001 Epoch [23/64], Step [400/600], Loss: 0.0090 Epoch [23/64], Step [500/600], Loss: 0.0010 Epoch [23/64], Step [600/600], Loss: 0.0019 Epoch [24/64], Step [100/600], Loss: 0.0042 Epoch [24/64], Step [200/600], Loss: 0.0008 Epoch [24/64], Step [300/600], Loss: 0.0039 Epoch [24/64], Step [400/600], Loss: 0.0082 Epoch [24/64], Step [500/600], Loss: 0.0057 Epoch [24/64], Step [600/600], Loss: 0.0003 Epoch [25/64], Step [100/600], Loss: 0.0022 Epoch [25/64], Step [200/600], Loss: 0.0009 Epoch [25/64], Step [300/600], Loss: 0.0009 Epoch [25/64], Step [400/600], Loss: 0.0004 Epoch [25/64], Step [500/600], Loss: 0.0085 Epoch [25/64], Step [600/600], Loss: 0.0004 Epoch [26/64], Step [100/600], Loss: 0.0010 Epoch [26/64], Step [200/600], Loss: 0.0003 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0003 Epoch [26/64], Step [500/600], Loss: 0.0086 Epoch [26/64], Step [600/600], Loss: 0.0001 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0009 Epoch [27/64], Step [300/600], Loss: 0.0004 Epoch [27/64], Step [400/600], Loss: 0.0200 Epoch [27/64], Step [500/600], Loss: 0.0015 Epoch [27/64], Step [600/600], Loss: 0.0003 Epoch [28/64], Step [100/600], Loss: 0.0008 Epoch [28/64], Step [200/600], Loss: 0.0004 Epoch [28/64], Step [300/600], Loss: 0.0079 Epoch [28/64], Step [400/600], Loss: 0.0061 Epoch [28/64], Step [500/600], Loss: 0.0003 Epoch [28/64], Step [600/600], Loss: 0.0008 Epoch [29/64], Step [100/600], Loss: 0.0009 Epoch [29/64], Step [200/600], Loss: 0.0004 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0003 Epoch [29/64], Step [500/600], Loss: 0.0006 Epoch [29/64], Step [600/600], Loss: 0.0086 Epoch [30/64], Step [100/600], Loss: 0.0070 Epoch [30/64], Step [200/600], Loss: 0.0083 Epoch [30/64], Step [300/600], Loss: 0.0002 Epoch [30/64], Step [400/600], Loss: 0.0022 Epoch [30/64], Step [500/600], Loss: 0.0015 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0002 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0014 Epoch [31/64], Step [500/600], Loss: 0.0005 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0007 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0003 Epoch [32/64], Step [600/600], Loss: 0.0008 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0008 Epoch [33/64], Step [300/600], Loss: 0.0100 Epoch [33/64], Step [400/600], Loss: 0.0213 Epoch [33/64], Step [500/600], Loss: 0.0025 Epoch [33/64], Step [600/600], Loss: 0.0021 Epoch [34/64], Step [100/600], Loss: 0.0022 Epoch [34/64], Step [200/600], Loss: 0.0004 Epoch [34/64], Step [300/600], Loss: 0.0002 Epoch [34/64], Step [400/600], Loss: 0.0002 Epoch [34/64], Step [500/600], Loss: 0.0002 Epoch [34/64], Step [600/600], Loss: 0.0071 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0004 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0004 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0035 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0006 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0002 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0002 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0000 Epoch [38/64], Step [600/600], Loss: 0.0002 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0000 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0000 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0000 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0186 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0011 Epoch [44/64], Step [300/600], Loss: 0.0017 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0484 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0010 Epoch [45/64], Step [300/600], Loss: 0.0006 Epoch [45/64], Step [400/600], Loss: 0.0001 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0038 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0003 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0008 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0002 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0002 Epoch [48/64], Step [400/600], Loss: 0.0002 Epoch [48/64], Step [500/600], Loss: 0.0003 Epoch [48/64], Step [600/600], Loss: 0.0002 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0007 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0001 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0004 Epoch [54/64], Step [500/600], Loss: 0.0019 Epoch [54/64], Step [600/600], Loss: 0.0071 Epoch [55/64], Step [100/600], Loss: 0.0005 Epoch [55/64], Step [200/600], Loss: 0.0074 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0004 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0015 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0009 Epoch [57/64], Step [200/600], Loss: 0.0002 Epoch [57/64], Step [300/600], Loss: 0.0002 Epoch [57/64], Step [400/600], Loss: 0.0005 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0007 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0002 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0001 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0002 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0012 Epoch [64/64], Step [600/600], Loss: 0.0301 Pytorch test completed in 440.223 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins6806710746414470659.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS