Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 96136 queued and waiting for resources srun: job 96136 has been allocated resources Running benchmark on hydro05 Epoch [1/64], Step [100/600], Loss: 0.2363 Epoch [1/64], Step [200/600], Loss: 0.1420 Epoch [1/64], Step [300/600], Loss: 0.1596 Epoch [1/64], Step [400/600], Loss: 0.0881 Epoch [1/64], Step [500/600], Loss: 0.0608 Epoch [1/64], Step [600/600], Loss: 0.0573 Epoch [2/64], Step [100/600], Loss: 0.0476 Epoch [2/64], Step [200/600], Loss: 0.0620 Epoch [2/64], Step [300/600], Loss: 0.0576 Epoch [2/64], Step [400/600], Loss: 0.0210 Epoch [2/64], Step [500/600], Loss: 0.0497 Epoch [2/64], Step [600/600], Loss: 0.0591 Epoch [3/64], Step [100/600], Loss: 0.0722 Epoch [3/64], Step [200/600], Loss: 0.0576 Epoch [3/64], Step [300/600], Loss: 0.0095 Epoch [3/64], Step [400/600], Loss: 0.0266 Epoch [3/64], Step [500/600], Loss: 0.0166 Epoch [3/64], Step [600/600], Loss: 0.0514 Epoch [4/64], Step [100/600], Loss: 0.0231 Epoch [4/64], Step [200/600], Loss: 0.0195 Epoch [4/64], Step [300/600], Loss: 0.0064 Epoch [4/64], Step [400/600], Loss: 0.0115 Epoch [4/64], Step [500/600], Loss: 0.0377 Epoch [4/64], Step [600/600], Loss: 0.0076 Epoch [5/64], Step [100/600], Loss: 0.0418 Epoch [5/64], Step [200/600], Loss: 0.0146 Epoch [5/64], Step [300/600], Loss: 0.0956 Epoch [5/64], Step [400/600], Loss: 0.0209 Epoch [5/64], Step [500/600], Loss: 0.0237 Epoch [5/64], Step [600/600], Loss: 0.0359 Epoch [6/64], Step [100/600], Loss: 0.0208 Epoch [6/64], Step [200/600], Loss: 0.0102 Epoch [6/64], Step [300/600], Loss: 0.0049 Epoch [6/64], Step [400/600], Loss: 0.0015 Epoch [6/64], Step [500/600], Loss: 0.0130 Epoch [6/64], Step [600/600], Loss: 0.0288 Epoch [7/64], Step [100/600], Loss: 0.0294 Epoch [7/64], Step [200/600], Loss: 0.0324 Epoch [7/64], Step [300/600], Loss: 0.1992 Epoch [7/64], Step [400/600], Loss: 0.0131 Epoch [7/64], Step [500/600], Loss: 0.0302 Epoch [7/64], Step [600/600], Loss: 0.0097 Epoch [8/64], Step [100/600], Loss: 0.0018 Epoch [8/64], Step [200/600], Loss: 0.0353 Epoch [8/64], Step [300/600], Loss: 0.0035 Epoch [8/64], Step [400/600], Loss: 0.0178 Epoch [8/64], Step [500/600], Loss: 0.0085 Epoch [8/64], Step [600/600], Loss: 0.0031 Epoch [9/64], Step [100/600], Loss: 0.0089 Epoch [9/64], Step [200/600], Loss: 0.0374 Epoch [9/64], Step [300/600], Loss: 0.0105 Epoch [9/64], Step [400/600], Loss: 0.0426 Epoch [9/64], Step [500/600], Loss: 0.0607 Epoch [9/64], Step [600/600], Loss: 0.0215 Epoch [10/64], Step [100/600], Loss: 0.0084 Epoch [10/64], Step [200/600], Loss: 0.0107 Epoch [10/64], Step [300/600], Loss: 0.0027 Epoch [10/64], Step [400/600], Loss: 0.0226 Epoch [10/64], Step [500/600], Loss: 0.0047 Epoch [10/64], Step [600/600], Loss: 0.0139 Epoch [11/64], Step [100/600], Loss: 0.0026 Epoch [11/64], Step [200/600], Loss: 0.0035 Epoch [11/64], Step [300/600], Loss: 0.0085 Epoch [11/64], Step [400/600], Loss: 0.0183 Epoch [11/64], Step [500/600], Loss: 0.0055 Epoch [11/64], Step [600/600], Loss: 0.0031 Epoch [12/64], Step [100/600], Loss: 0.0029 Epoch [12/64], Step [200/600], Loss: 0.0031 Epoch [12/64], Step [300/600], Loss: 0.0181 Epoch [12/64], Step [400/600], Loss: 0.0098 Epoch [12/64], Step [500/600], Loss: 0.0153 Epoch [12/64], Step [600/600], Loss: 0.0695 Epoch [13/64], Step [100/600], Loss: 0.0164 Epoch [13/64], Step [200/600], Loss: 0.0017 Epoch [13/64], Step [300/600], Loss: 0.0035 Epoch [13/64], Step [400/600], Loss: 0.0018 Epoch [13/64], Step [500/600], Loss: 0.0018 Epoch [13/64], Step [600/600], Loss: 0.0026 Epoch [14/64], Step [100/600], Loss: 0.0027 Epoch [14/64], Step [200/600], Loss: 0.0041 Epoch [14/64], Step [300/600], Loss: 0.0010 Epoch [14/64], Step [400/600], Loss: 0.0241 Epoch [14/64], Step [500/600], Loss: 0.0021 Epoch [14/64], Step [600/600], Loss: 0.0083 Epoch [15/64], Step [100/600], Loss: 0.0055 Epoch [15/64], Step [200/600], Loss: 0.0003 Epoch [15/64], Step [300/600], Loss: 0.0020 Epoch [15/64], Step [400/600], Loss: 0.0019 Epoch [15/64], Step [500/600], Loss: 0.0090 Epoch [15/64], Step [600/600], Loss: 0.0042 Epoch [16/64], Step [100/600], Loss: 0.0083 Epoch [16/64], Step [200/600], Loss: 0.0177 Epoch [16/64], Step [300/600], Loss: 0.0039 Epoch [16/64], Step [400/600], Loss: 0.0036 Epoch [16/64], Step [500/600], Loss: 0.0014 Epoch [16/64], Step [600/600], Loss: 0.0089 Epoch [17/64], Step [100/600], Loss: 0.0021 Epoch [17/64], Step [200/600], Loss: 0.0006 Epoch [17/64], Step [300/600], Loss: 0.0018 Epoch [17/64], Step [400/600], Loss: 0.0011 Epoch [17/64], Step [500/600], Loss: 0.0026 Epoch [17/64], Step [600/600], Loss: 0.0084 Epoch [18/64], Step [100/600], Loss: 0.0013 Epoch [18/64], Step [200/600], Loss: 0.0067 Epoch [18/64], Step [300/600], Loss: 0.0008 Epoch [18/64], Step [400/600], Loss: 0.0007 Epoch [18/64], Step [500/600], Loss: 0.0044 Epoch [18/64], Step [600/600], Loss: 0.0007 Epoch [19/64], Step [100/600], Loss: 0.0020 Epoch [19/64], Step [200/600], Loss: 0.0007 Epoch [19/64], Step [300/600], Loss: 0.0001 Epoch [19/64], Step [400/600], Loss: 0.0008 Epoch [19/64], Step [500/600], Loss: 0.0016 Epoch [19/64], Step [600/600], Loss: 0.0006 Epoch [20/64], Step [100/600], Loss: 0.0011 Epoch [20/64], Step [200/600], Loss: 0.0007 Epoch [20/64], Step [300/600], Loss: 0.0028 Epoch [20/64], Step [400/600], Loss: 0.0018 Epoch [20/64], Step [500/600], Loss: 0.0101 Epoch [20/64], Step [600/600], Loss: 0.0047 Epoch [21/64], Step [100/600], Loss: 0.0014 Epoch [21/64], Step [200/600], Loss: 0.0001 Epoch [21/64], Step [300/600], Loss: 0.0011 Epoch [21/64], Step [400/600], Loss: 0.0007 Epoch [21/64], Step [500/600], Loss: 0.0101 Epoch [21/64], Step [600/600], Loss: 0.0186 Epoch [22/64], Step [100/600], Loss: 0.0025 Epoch [22/64], Step [200/600], Loss: 0.0002 Epoch [22/64], Step [300/600], Loss: 0.0008 Epoch [22/64], Step [400/600], Loss: 0.0104 Epoch [22/64], Step [500/600], Loss: 0.0014 Epoch [22/64], Step [600/600], Loss: 0.0102 Epoch [23/64], Step [100/600], Loss: 0.0027 Epoch [23/64], Step [200/600], Loss: 0.0004 Epoch [23/64], Step [300/600], Loss: 0.0004 Epoch [23/64], Step [400/600], Loss: 0.0010 Epoch [23/64], Step [500/600], Loss: 0.0011 Epoch [23/64], Step [600/600], Loss: 0.0003 Epoch [24/64], Step [100/600], Loss: 0.0005 Epoch [24/64], Step [200/600], Loss: 0.0060 Epoch [24/64], Step [300/600], Loss: 0.0011 Epoch [24/64], Step [400/600], Loss: 0.0004 Epoch [24/64], Step [500/600], Loss: 0.0017 Epoch [24/64], Step [600/600], Loss: 0.0267 Epoch [25/64], Step [100/600], Loss: 0.0002 Epoch [25/64], Step [200/600], Loss: 0.0004 Epoch [25/64], Step [300/600], Loss: 0.0025 Epoch [25/64], Step [400/600], Loss: 0.0004 Epoch [25/64], Step [500/600], Loss: 0.0004 Epoch [25/64], Step [600/600], Loss: 0.0017 Epoch [26/64], Step [100/600], Loss: 0.0014 Epoch [26/64], Step [200/600], Loss: 0.0006 Epoch [26/64], Step [300/600], Loss: 0.0000 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0134 Epoch [26/64], Step [600/600], Loss: 0.0006 Epoch [27/64], Step [100/600], Loss: 0.0009 Epoch [27/64], Step [200/600], Loss: 0.0007 Epoch [27/64], Step [300/600], Loss: 0.0042 Epoch [27/64], Step [400/600], Loss: 0.0022 Epoch [27/64], Step [500/600], Loss: 0.0181 Epoch [27/64], Step [600/600], Loss: 0.0034 Epoch [28/64], Step [100/600], Loss: 0.0047 Epoch [28/64], Step [200/600], Loss: 0.0004 Epoch [28/64], Step [300/600], Loss: 0.0221 Epoch [28/64], Step [400/600], Loss: 0.0033 Epoch [28/64], Step [500/600], Loss: 0.0013 Epoch [28/64], Step [600/600], Loss: 0.0005 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0017 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0007 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0004 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0006 Epoch [30/64], Step [300/600], Loss: 0.0004 Epoch [30/64], Step [400/600], Loss: 0.0004 Epoch [30/64], Step [500/600], Loss: 0.0001 Epoch [30/64], Step [600/600], Loss: 0.0006 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0002 Epoch [31/64], Step [400/600], Loss: 0.0003 Epoch [31/64], Step [500/600], Loss: 0.0005 Epoch [31/64], Step [600/600], Loss: 0.0000 Epoch [32/64], Step [100/600], Loss: 0.0000 Epoch [32/64], Step [200/600], Loss: 0.0004 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0005 Epoch [32/64], Step [600/600], Loss: 0.0000 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0018 Epoch [33/64], Step [500/600], Loss: 0.0237 Epoch [33/64], Step [600/600], Loss: 0.0034 Epoch [34/64], Step [100/600], Loss: 0.0006 Epoch [34/64], Step [200/600], Loss: 0.0010 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0025 Epoch [34/64], Step [500/600], Loss: 0.0002 Epoch [34/64], Step [600/600], Loss: 0.0002 Epoch [35/64], Step [100/600], Loss: 0.0012 Epoch [35/64], Step [200/600], Loss: 0.0066 Epoch [35/64], Step [300/600], Loss: 0.0018 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0001 Epoch [36/64], Step [100/600], Loss: 0.0010 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0015 Epoch [36/64], Step [400/600], Loss: 0.0010 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0001 Epoch [38/64], Step [100/600], Loss: 0.0004 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0002 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0005 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0002 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0000 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0001 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0003 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0869 Epoch [43/64], Step [100/600], Loss: 0.0007 Epoch [43/64], Step [200/600], Loss: 0.0470 Epoch [43/64], Step [300/600], Loss: 0.0026 Epoch [43/64], Step [400/600], Loss: 0.0007 Epoch [43/64], Step [500/600], Loss: 0.0309 Epoch [43/64], Step [600/600], Loss: 0.0033 Epoch [44/64], Step [100/600], Loss: 0.0315 Epoch [44/64], Step [200/600], Loss: 0.0011 Epoch [44/64], Step [300/600], Loss: 0.0007 Epoch [44/64], Step [400/600], Loss: 0.0003 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0003 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0001 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0002 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0003 Epoch [47/64], Step [600/600], Loss: 0.0002 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0004 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0001 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0000 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0001 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0072 Epoch [53/64], Step [100/600], Loss: 0.0029 Epoch [53/64], Step [200/600], Loss: 0.0006 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0227 Epoch [53/64], Step [500/600], Loss: 0.0152 Epoch [53/64], Step [600/600], Loss: 0.0009 Epoch [54/64], Step [100/600], Loss: 0.0004 Epoch [54/64], Step [200/600], Loss: 0.0002 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0027 Epoch [54/64], Step [500/600], Loss: 0.0011 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0003 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0002 Epoch [55/64], Step [500/600], Loss: 0.0007 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0001 Epoch [56/64], Step [200/600], Loss: 0.0005 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0004 Epoch [56/64], Step [500/600], Loss: 0.0004 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0001 Epoch [57/64], Step [400/600], Loss: 0.0001 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0002 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0001 Epoch [59/64], Step [300/600], Loss: 0.0001 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0001 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0001 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 439.730 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins2011768228673171109.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS