Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 97159 queued and waiting for resources srun: job 97159 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.1753 Epoch [1/64], Step [200/600], Loss: 0.1665 Epoch [1/64], Step [300/600], Loss: 0.0720 Epoch [1/64], Step [400/600], Loss: 0.1198 Epoch [1/64], Step [500/600], Loss: 0.1350 Epoch [1/64], Step [600/600], Loss: 0.0976 Epoch [2/64], Step [100/600], Loss: 0.0455 Epoch [2/64], Step [200/600], Loss: 0.0893 Epoch [2/64], Step [300/600], Loss: 0.0279 Epoch [2/64], Step [400/600], Loss: 0.0847 Epoch [2/64], Step [500/600], Loss: 0.0555 Epoch [2/64], Step [600/600], Loss: 0.1074 Epoch [3/64], Step [100/600], Loss: 0.0111 Epoch [3/64], Step [200/600], Loss: 0.0259 Epoch [3/64], Step [300/600], Loss: 0.0241 Epoch [3/64], Step [400/600], Loss: 0.1189 Epoch [3/64], Step [500/600], Loss: 0.0154 Epoch [3/64], Step [600/600], Loss: 0.0243 Epoch [4/64], Step [100/600], Loss: 0.0724 Epoch [4/64], Step [200/600], Loss: 0.0403 Epoch [4/64], Step [300/600], Loss: 0.0160 Epoch [4/64], Step [400/600], Loss: 0.0617 Epoch [4/64], Step [500/600], Loss: 0.0975 Epoch [4/64], Step [600/600], Loss: 0.0189 Epoch [5/64], Step [100/600], Loss: 0.0300 Epoch [5/64], Step [200/600], Loss: 0.0228 Epoch [5/64], Step [300/600], Loss: 0.0229 Epoch [5/64], Step [400/600], Loss: 0.0329 Epoch [5/64], Step [500/600], Loss: 0.0198 Epoch [5/64], Step [600/600], Loss: 0.0381 Epoch [6/64], Step [100/600], Loss: 0.0077 Epoch [6/64], Step [200/600], Loss: 0.0091 Epoch [6/64], Step [300/600], Loss: 0.0096 Epoch [6/64], Step [400/600], Loss: 0.0172 Epoch [6/64], Step [500/600], Loss: 0.0190 Epoch [6/64], Step [600/600], Loss: 0.0488 Epoch [7/64], Step [100/600], Loss: 0.0140 Epoch [7/64], Step [200/600], Loss: 0.0501 Epoch [7/64], Step [300/600], Loss: 0.0269 Epoch [7/64], Step [400/600], Loss: 0.0086 Epoch [7/64], Step [500/600], Loss: 0.0049 Epoch [7/64], Step [600/600], Loss: 0.0116 Epoch [8/64], Step [100/600], Loss: 0.0043 Epoch [8/64], Step [200/600], Loss: 0.0143 Epoch [8/64], Step [300/600], Loss: 0.0021 Epoch [8/64], Step [400/600], Loss: 0.0143 Epoch [8/64], Step [500/600], Loss: 0.0135 Epoch [8/64], Step [600/600], Loss: 0.0049 Epoch [9/64], Step [100/600], Loss: 0.0021 Epoch [9/64], Step [200/600], Loss: 0.0014 Epoch [9/64], Step [300/600], Loss: 0.0056 Epoch [9/64], Step [400/600], Loss: 0.0217 Epoch [9/64], Step [500/600], Loss: 0.0076 Epoch [9/64], Step [600/600], Loss: 0.0131 Epoch [10/64], Step [100/600], Loss: 0.0187 Epoch [10/64], Step [200/600], Loss: 0.0137 Epoch [10/64], Step [300/600], Loss: 0.0192 Epoch [10/64], Step [400/600], Loss: 0.0112 Epoch [10/64], Step [500/600], Loss: 0.0108 Epoch [10/64], Step [600/600], Loss: 0.0015 Epoch [11/64], Step [100/600], Loss: 0.0066 Epoch [11/64], Step [200/600], Loss: 0.0083 Epoch [11/64], Step [300/600], Loss: 0.0016 Epoch [11/64], Step [400/600], Loss: 0.0053 Epoch [11/64], Step [500/600], Loss: 0.0148 Epoch [11/64], Step [600/600], Loss: 0.0094 Epoch [12/64], Step [100/600], Loss: 0.0049 Epoch [12/64], Step [200/600], Loss: 0.0260 Epoch [12/64], Step [300/600], Loss: 0.0119 Epoch [12/64], Step [400/600], Loss: 0.0040 Epoch [12/64], Step [500/600], Loss: 0.0051 Epoch [12/64], Step [600/600], Loss: 0.0179 Epoch [13/64], Step [100/600], Loss: 0.0011 Epoch [13/64], Step [200/600], Loss: 0.0048 Epoch [13/64], Step [300/600], Loss: 0.0181 Epoch [13/64], Step [400/600], Loss: 0.0133 Epoch [13/64], Step [500/600], Loss: 0.0044 Epoch [13/64], Step [600/600], Loss: 0.0027 Epoch [14/64], Step [100/600], Loss: 0.0033 Epoch [14/64], Step [200/600], Loss: 0.0012 Epoch [14/64], Step [300/600], Loss: 0.0126 Epoch [14/64], Step [400/600], Loss: 0.0016 Epoch [14/64], Step [500/600], Loss: 0.0130 Epoch [14/64], Step [600/600], Loss: 0.0022 Epoch [15/64], Step [100/600], Loss: 0.0005 Epoch [15/64], Step [200/600], Loss: 0.0043 Epoch [15/64], Step [300/600], Loss: 0.0071 Epoch [15/64], Step [400/600], Loss: 0.0015 Epoch [15/64], Step [500/600], Loss: 0.0153 Epoch [15/64], Step [600/600], Loss: 0.0055 Epoch [16/64], Step [100/600], Loss: 0.0147 Epoch [16/64], Step [200/600], Loss: 0.0069 Epoch [16/64], Step [300/600], Loss: 0.0042 Epoch [16/64], Step [400/600], Loss: 0.0039 Epoch [16/64], Step [500/600], Loss: 0.0121 Epoch [16/64], Step [600/600], Loss: 0.0082 Epoch [17/64], Step [100/600], Loss: 0.0007 Epoch [17/64], Step [200/600], Loss: 0.0011 Epoch [17/64], Step [300/600], Loss: 0.0003 Epoch [17/64], Step [400/600], Loss: 0.0008 Epoch [17/64], Step [500/600], Loss: 0.0022 Epoch [17/64], Step [600/600], Loss: 0.0145 Epoch [18/64], Step [100/600], Loss: 0.0034 Epoch [18/64], Step [200/600], Loss: 0.0001 Epoch [18/64], Step [300/600], Loss: 0.0015 Epoch [18/64], Step [400/600], Loss: 0.0013 Epoch [18/64], Step [500/600], Loss: 0.0067 Epoch [18/64], Step [600/600], Loss: 0.0027 Epoch [19/64], Step [100/600], Loss: 0.0054 Epoch [19/64], Step [200/600], Loss: 0.0020 Epoch [19/64], Step [300/600], Loss: 0.0030 Epoch [19/64], Step [400/600], Loss: 0.0002 Epoch [19/64], Step [500/600], Loss: 0.0023 Epoch [19/64], Step [600/600], Loss: 0.0006 Epoch [20/64], Step [100/600], Loss: 0.0009 Epoch [20/64], Step [200/600], Loss: 0.0004 Epoch [20/64], Step [300/600], Loss: 0.0028 Epoch [20/64], Step [400/600], Loss: 0.0007 Epoch [20/64], Step [500/600], Loss: 0.0042 Epoch [20/64], Step [600/600], Loss: 0.0017 Epoch [21/64], Step [100/600], Loss: 0.0011 Epoch [21/64], Step [200/600], Loss: 0.0032 Epoch [21/64], Step [300/600], Loss: 0.0022 Epoch [21/64], Step [400/600], Loss: 0.0054 Epoch [21/64], Step [500/600], Loss: 0.0002 Epoch [21/64], Step [600/600], Loss: 0.0010 Epoch [22/64], Step [100/600], Loss: 0.0000 Epoch [22/64], Step [200/600], Loss: 0.0003 Epoch [22/64], Step [300/600], Loss: 0.0008 Epoch [22/64], Step [400/600], Loss: 0.0054 Epoch [22/64], Step [500/600], Loss: 0.0016 Epoch [22/64], Step [600/600], Loss: 0.0098 Epoch [23/64], Step [100/600], Loss: 0.0001 Epoch [23/64], Step [200/600], Loss: 0.0010 Epoch [23/64], Step [300/600], Loss: 0.0005 Epoch [23/64], Step [400/600], Loss: 0.0315 Epoch [23/64], Step [500/600], Loss: 0.0115 Epoch [23/64], Step [600/600], Loss: 0.0014 Epoch [24/64], Step [100/600], Loss: 0.0045 Epoch [24/64], Step [200/600], Loss: 0.0033 Epoch [24/64], Step [300/600], Loss: 0.0148 Epoch [24/64], Step [400/600], Loss: 0.0029 Epoch [24/64], Step [500/600], Loss: 0.0053 Epoch [24/64], Step [600/600], Loss: 0.0037 Epoch [25/64], Step [100/600], Loss: 0.0021 Epoch [25/64], Step [200/600], Loss: 0.0001 Epoch [25/64], Step [300/600], Loss: 0.0003 Epoch [25/64], Step [400/600], Loss: 0.0009 Epoch [25/64], Step [500/600], Loss: 0.0003 Epoch [25/64], Step [600/600], Loss: 0.0013 Epoch [26/64], Step [100/600], Loss: 0.0002 Epoch [26/64], Step [200/600], Loss: 0.0001 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0002 Epoch [26/64], Step [500/600], Loss: 0.0004 Epoch [26/64], Step [600/600], Loss: 0.0002 Epoch [27/64], Step [100/600], Loss: 0.0003 Epoch [27/64], Step [200/600], Loss: 0.0001 Epoch [27/64], Step [300/600], Loss: 0.0005 Epoch [27/64], Step [400/600], Loss: 0.0001 Epoch [27/64], Step [500/600], Loss: 0.0004 Epoch [27/64], Step [600/600], Loss: 0.0002 Epoch [28/64], Step [100/600], Loss: 0.0001 Epoch [28/64], Step [200/600], Loss: 0.0002 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0003 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0002 Epoch [29/64], Step [100/600], Loss: 0.0003 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0002 Epoch [29/64], Step [400/600], Loss: 0.0001 Epoch [29/64], Step [500/600], Loss: 0.0006 Epoch [29/64], Step [600/600], Loss: 0.0024 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0008 Epoch [30/64], Step [300/600], Loss: 0.0023 Epoch [30/64], Step [400/600], Loss: 0.0003 Epoch [30/64], Step [500/600], Loss: 0.0028 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0007 Epoch [31/64], Step [200/600], Loss: 0.0025 Epoch [31/64], Step [300/600], Loss: 0.0003 Epoch [31/64], Step [400/600], Loss: 0.0013 Epoch [31/64], Step [500/600], Loss: 0.0004 Epoch [31/64], Step [600/600], Loss: 0.0023 Epoch [32/64], Step [100/600], Loss: 0.0000 Epoch [32/64], Step [200/600], Loss: 0.0008 Epoch [32/64], Step [300/600], Loss: 0.0009 Epoch [32/64], Step [400/600], Loss: 0.0002 Epoch [32/64], Step [500/600], Loss: 0.0003 Epoch [32/64], Step [600/600], Loss: 0.0001 Epoch [33/64], Step [100/600], Loss: 0.0010 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0002 Epoch [33/64], Step [500/600], Loss: 0.0002 Epoch [33/64], Step [600/600], Loss: 0.0003 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0002 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0000 Epoch [35/64], Step [100/600], Loss: 0.0003 Epoch [35/64], Step [200/600], Loss: 0.0002 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0019 Epoch [35/64], Step [500/600], Loss: 0.0007 Epoch [35/64], Step [600/600], Loss: 0.0894 Epoch [36/64], Step [100/600], Loss: 0.0076 Epoch [36/64], Step [200/600], Loss: 0.0177 Epoch [36/64], Step [300/600], Loss: 0.0010 Epoch [36/64], Step [400/600], Loss: 0.0123 Epoch [36/64], Step [500/600], Loss: 0.0059 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0005 Epoch [37/64], Step [200/600], Loss: 0.0009 Epoch [37/64], Step [300/600], Loss: 0.0026 Epoch [37/64], Step [400/600], Loss: 0.0017 Epoch [37/64], Step [500/600], Loss: 0.0001 Epoch [37/64], Step [600/600], Loss: 0.0004 Epoch [38/64], Step [100/600], Loss: 0.0001 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0004 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0003 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0002 Epoch [39/64], Step [200/600], Loss: 0.0003 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0006 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0008 Epoch [40/64], Step [200/600], Loss: 0.0002 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0004 Epoch [41/64], Step [400/600], Loss: 0.0001 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0002 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0001 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0000 Epoch [43/64], Step [500/600], Loss: 0.0002 Epoch [43/64], Step [600/600], Loss: 0.0001 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0000 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0000 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0861 Epoch [47/64], Step [600/600], Loss: 0.0611 Epoch [48/64], Step [100/600], Loss: 0.0013 Epoch [48/64], Step [200/600], Loss: 0.0135 Epoch [48/64], Step [300/600], Loss: 0.0004 Epoch [48/64], Step [400/600], Loss: 0.0010 Epoch [48/64], Step [500/600], Loss: 0.0028 Epoch [48/64], Step [600/600], Loss: 0.0024 Epoch [49/64], Step [100/600], Loss: 0.0047 Epoch [49/64], Step [200/600], Loss: 0.0001 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0003 Epoch [49/64], Step [500/600], Loss: 0.0045 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0001 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0001 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0001 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0002 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0001 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0000 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0010 Epoch [59/64], Step [400/600], Loss: 0.0006 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0026 Epoch [60/64], Step [100/600], Loss: 0.0002 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0205 Epoch [60/64], Step [400/600], Loss: 0.0006 Epoch [60/64], Step [500/600], Loss: 0.0002 Epoch [60/64], Step [600/600], Loss: 0.0006 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0036 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0012 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0001 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0002 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0001 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 380.152 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins10863761244556288005.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS