Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 98775 queued and waiting for resources srun: job 98775 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2084 Epoch [1/64], Step [200/600], Loss: 0.1431 Epoch [1/64], Step [300/600], Loss: 0.1361 Epoch [1/64], Step [400/600], Loss: 0.0982 Epoch [1/64], Step [500/600], Loss: 0.0569 Epoch [1/64], Step [600/600], Loss: 0.0847 Epoch [2/64], Step [100/600], Loss: 0.0806 Epoch [2/64], Step [200/600], Loss: 0.0563 Epoch [2/64], Step [300/600], Loss: 0.0500 Epoch [2/64], Step [400/600], Loss: 0.0233 Epoch [2/64], Step [500/600], Loss: 0.0657 Epoch [2/64], Step [600/600], Loss: 0.0428 Epoch [3/64], Step [100/600], Loss: 0.0396 Epoch [3/64], Step [200/600], Loss: 0.0363 Epoch [3/64], Step [300/600], Loss: 0.0590 Epoch [3/64], Step [400/600], Loss: 0.0398 Epoch [3/64], Step [500/600], Loss: 0.0301 Epoch [3/64], Step [600/600], Loss: 0.0289 Epoch [4/64], Step [100/600], Loss: 0.0181 Epoch [4/64], Step [200/600], Loss: 0.0158 Epoch [4/64], Step [300/600], Loss: 0.0606 Epoch [4/64], Step [400/600], Loss: 0.0054 Epoch [4/64], Step [500/600], Loss: 0.0615 Epoch [4/64], Step [600/600], Loss: 0.0629 Epoch [5/64], Step [100/600], Loss: 0.0061 Epoch [5/64], Step [200/600], Loss: 0.0131 Epoch [5/64], Step [300/600], Loss: 0.0480 Epoch [5/64], Step [400/600], Loss: 0.0374 Epoch [5/64], Step [500/600], Loss: 0.0100 Epoch [5/64], Step [600/600], Loss: 0.0673 Epoch [6/64], Step [100/600], Loss: 0.0054 Epoch [6/64], Step [200/600], Loss: 0.0120 Epoch [6/64], Step [300/600], Loss: 0.1153 Epoch [6/64], Step [400/600], Loss: 0.0047 Epoch [6/64], Step [500/600], Loss: 0.0190 Epoch [6/64], Step [600/600], Loss: 0.0139 Epoch [7/64], Step [100/600], Loss: 0.0179 Epoch [7/64], Step [200/600], Loss: 0.0255 Epoch [7/64], Step [300/600], Loss: 0.0015 Epoch [7/64], Step [400/600], Loss: 0.0098 Epoch [7/64], Step [500/600], Loss: 0.0110 Epoch [7/64], Step [600/600], Loss: 0.0163 Epoch [8/64], Step [100/600], Loss: 0.0049 Epoch [8/64], Step [200/600], Loss: 0.0516 Epoch [8/64], Step [300/600], Loss: 0.0101 Epoch [8/64], Step [400/600], Loss: 0.0190 Epoch [8/64], Step [500/600], Loss: 0.0597 Epoch [8/64], Step [600/600], Loss: 0.0128 Epoch [9/64], Step [100/600], Loss: 0.0172 Epoch [9/64], Step [200/600], Loss: 0.0549 Epoch [9/64], Step [300/600], Loss: 0.0010 Epoch [9/64], Step [400/600], Loss: 0.0278 Epoch [9/64], Step [500/600], Loss: 0.0799 Epoch [9/64], Step [600/600], Loss: 0.0281 Epoch [10/64], Step [100/600], Loss: 0.0114 Epoch [10/64], Step [200/600], Loss: 0.0355 Epoch [10/64], Step [300/600], Loss: 0.0166 Epoch [10/64], Step [400/600], Loss: 0.0112 Epoch [10/64], Step [500/600], Loss: 0.0195 Epoch [10/64], Step [600/600], Loss: 0.0122 Epoch [11/64], Step [100/600], Loss: 0.0196 Epoch [11/64], Step [200/600], Loss: 0.0050 Epoch [11/64], Step [300/600], Loss: 0.0064 Epoch [11/64], Step [400/600], Loss: 0.0013 Epoch [11/64], Step [500/600], Loss: 0.0431 Epoch [11/64], Step [600/600], Loss: 0.0091 Epoch [12/64], Step [100/600], Loss: 0.0071 Epoch [12/64], Step [200/600], Loss: 0.0055 Epoch [12/64], Step [300/600], Loss: 0.0006 Epoch [12/64], Step [400/600], Loss: 0.0090 Epoch [12/64], Step [500/600], Loss: 0.0197 Epoch [12/64], Step [600/600], Loss: 0.0110 Epoch [13/64], Step [100/600], Loss: 0.0350 Epoch [13/64], Step [200/600], Loss: 0.0039 Epoch [13/64], Step [300/600], Loss: 0.0072 Epoch [13/64], Step [400/600], Loss: 0.0036 Epoch [13/64], Step [500/600], Loss: 0.0119 Epoch [13/64], Step [600/600], Loss: 0.0109 Epoch [14/64], Step [100/600], Loss: 0.0003 Epoch [14/64], Step [200/600], Loss: 0.0011 Epoch [14/64], Step [300/600], Loss: 0.0068 Epoch [14/64], Step [400/600], Loss: 0.0009 Epoch [14/64], Step [500/600], Loss: 0.0161 Epoch [14/64], Step [600/600], Loss: 0.0033 Epoch [15/64], Step [100/600], Loss: 0.0012 Epoch [15/64], Step [200/600], Loss: 0.0002 Epoch [15/64], Step [300/600], Loss: 0.0144 Epoch [15/64], Step [400/600], Loss: 0.0018 Epoch [15/64], Step [500/600], Loss: 0.0027 Epoch [15/64], Step [600/600], Loss: 0.0053 Epoch [16/64], Step [100/600], Loss: 0.0047 Epoch [16/64], Step [200/600], Loss: 0.0013 Epoch [16/64], Step [300/600], Loss: 0.0154 Epoch [16/64], Step [400/600], Loss: 0.0024 Epoch [16/64], Step [500/600], Loss: 0.0001 Epoch [16/64], Step [600/600], Loss: 0.0261 Epoch [17/64], Step [100/600], Loss: 0.0061 Epoch [17/64], Step [200/600], Loss: 0.0012 Epoch [17/64], Step [300/600], Loss: 0.0015 Epoch [17/64], Step [400/600], Loss: 0.0164 Epoch [17/64], Step [500/600], Loss: 0.0288 Epoch [17/64], Step [600/600], Loss: 0.0011 Epoch [18/64], Step [100/600], Loss: 0.0009 Epoch [18/64], Step [200/600], Loss: 0.0028 Epoch [18/64], Step [300/600], Loss: 0.0008 Epoch [18/64], Step [400/600], Loss: 0.0049 Epoch [18/64], Step [500/600], Loss: 0.0005 Epoch [18/64], Step [600/600], Loss: 0.0002 Epoch [19/64], Step [100/600], Loss: 0.0011 Epoch [19/64], Step [200/600], Loss: 0.0009 Epoch [19/64], Step [300/600], Loss: 0.0038 Epoch [19/64], Step [400/600], Loss: 0.0005 Epoch [19/64], Step [500/600], Loss: 0.0004 Epoch [19/64], Step [600/600], Loss: 0.0047 Epoch [20/64], Step [100/600], Loss: 0.0150 Epoch [20/64], Step [200/600], Loss: 0.0005 Epoch [20/64], Step [300/600], Loss: 0.0031 Epoch [20/64], Step [400/600], Loss: 0.0004 Epoch [20/64], Step [500/600], Loss: 0.0013 Epoch [20/64], Step [600/600], Loss: 0.0005 Epoch [21/64], Step [100/600], Loss: 0.0007 Epoch [21/64], Step [200/600], Loss: 0.0043 Epoch [21/64], Step [300/600], Loss: 0.0008 Epoch [21/64], Step [400/600], Loss: 0.0135 Epoch [21/64], Step [500/600], Loss: 0.0004 Epoch [21/64], Step [600/600], Loss: 0.0110 Epoch [22/64], Step [100/600], Loss: 0.0004 Epoch [22/64], Step [200/600], Loss: 0.0000 Epoch [22/64], Step [300/600], Loss: 0.0001 Epoch [22/64], Step [400/600], Loss: 0.0021 Epoch [22/64], Step [500/600], Loss: 0.0082 Epoch [22/64], Step [600/600], Loss: 0.0014 Epoch [23/64], Step [100/600], Loss: 0.0001 Epoch [23/64], Step [200/600], Loss: 0.0373 Epoch [23/64], Step [300/600], Loss: 0.0004 Epoch [23/64], Step [400/600], Loss: 0.0030 Epoch [23/64], Step [500/600], Loss: 0.0141 Epoch [23/64], Step [600/600], Loss: 0.0001 Epoch [24/64], Step [100/600], Loss: 0.0019 Epoch [24/64], Step [200/600], Loss: 0.0004 Epoch [24/64], Step [300/600], Loss: 0.0006 Epoch [24/64], Step [400/600], Loss: 0.0002 Epoch [24/64], Step [500/600], Loss: 0.0066 Epoch [24/64], Step [600/600], Loss: 0.0010 Epoch [25/64], Step [100/600], Loss: 0.0011 Epoch [25/64], Step [200/600], Loss: 0.0005 Epoch [25/64], Step [300/600], Loss: 0.0002 Epoch [25/64], Step [400/600], Loss: 0.0006 Epoch [25/64], Step [500/600], Loss: 0.0201 Epoch [25/64], Step [600/600], Loss: 0.0016 Epoch [26/64], Step [100/600], Loss: 0.0014 Epoch [26/64], Step [200/600], Loss: 0.0002 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0003 Epoch [26/64], Step [500/600], Loss: 0.0007 Epoch [26/64], Step [600/600], Loss: 0.0223 Epoch [27/64], Step [100/600], Loss: 0.0152 Epoch [27/64], Step [200/600], Loss: 0.0053 Epoch [27/64], Step [300/600], Loss: 0.0014 Epoch [27/64], Step [400/600], Loss: 0.0001 Epoch [27/64], Step [500/600], Loss: 0.0002 Epoch [27/64], Step [600/600], Loss: 0.0002 Epoch [28/64], Step [100/600], Loss: 0.0004 Epoch [28/64], Step [200/600], Loss: 0.0042 Epoch [28/64], Step [300/600], Loss: 0.0012 Epoch [28/64], Step [400/600], Loss: 0.0001 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0027 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0002 Epoch [29/64], Step [300/600], Loss: 0.0004 Epoch [29/64], Step [400/600], Loss: 0.0006 Epoch [29/64], Step [500/600], Loss: 0.0006 Epoch [29/64], Step [600/600], Loss: 0.0003 Epoch [30/64], Step [100/600], Loss: 0.0008 Epoch [30/64], Step [200/600], Loss: 0.0004 Epoch [30/64], Step [300/600], Loss: 0.0007 Epoch [30/64], Step [400/600], Loss: 0.0001 Epoch [30/64], Step [500/600], Loss: 0.0038 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0154 Epoch [31/64], Step [200/600], Loss: 0.0010 Epoch [31/64], Step [300/600], Loss: 0.0117 Epoch [31/64], Step [400/600], Loss: 0.0003 Epoch [31/64], Step [500/600], Loss: 0.0001 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0004 Epoch [32/64], Step [200/600], Loss: 0.0013 Epoch [32/64], Step [300/600], Loss: 0.0001 Epoch [32/64], Step [400/600], Loss: 0.0002 Epoch [32/64], Step [500/600], Loss: 0.0000 Epoch [32/64], Step [600/600], Loss: 0.0008 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0000 Epoch [33/64], Step [300/600], Loss: 0.0000 Epoch [33/64], Step [400/600], Loss: 0.0006 Epoch [33/64], Step [500/600], Loss: 0.0004 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0001 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0000 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0000 Epoch [35/64], Step [200/600], Loss: 0.0001 Epoch [35/64], Step [300/600], Loss: 0.0000 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0002 Epoch [35/64], Step [600/600], Loss: 0.0000 Epoch [36/64], Step [100/600], Loss: 0.0000 Epoch [36/64], Step [200/600], Loss: 0.0002 Epoch [36/64], Step [300/600], Loss: 0.0002 Epoch [36/64], Step [400/600], Loss: 0.0000 Epoch [36/64], Step [500/600], Loss: 0.0004 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0002 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0065 Epoch [39/64], Step [200/600], Loss: 0.0105 Epoch [39/64], Step [300/600], Loss: 0.0015 Epoch [39/64], Step [400/600], Loss: 0.0015 Epoch [39/64], Step [500/600], Loss: 0.0011 Epoch [39/64], Step [600/600], Loss: 0.0002 Epoch [40/64], Step [100/600], Loss: 0.0007 Epoch [40/64], Step [200/600], Loss: 0.0004 Epoch [40/64], Step [300/600], Loss: 0.0002 Epoch [40/64], Step [400/600], Loss: 0.0005 Epoch [40/64], Step [500/600], Loss: 0.0038 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0002 Epoch [41/64], Step [400/600], Loss: 0.0004 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0005 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0002 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0003 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.0001 Epoch [43/64], Step [500/600], Loss: 0.0000 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0001 Epoch [44/64], Step [300/600], Loss: 0.0002 Epoch [44/64], Step [400/600], Loss: 0.0001 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0000 Epoch [45/64], Step [100/600], Loss: 0.0001 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0000 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0002 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0923 Epoch [47/64], Step [100/600], Loss: 0.0262 Epoch [47/64], Step [200/600], Loss: 0.0025 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0011 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0004 Epoch [48/64], Step [100/600], Loss: 0.0009 Epoch [48/64], Step [200/600], Loss: 0.0004 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0003 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0002 Epoch [49/64], Step [200/600], Loss: 0.0006 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0002 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0003 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0002 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0001 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0001 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0002 Epoch [55/64], Step [400/600], Loss: 0.0016 Epoch [55/64], Step [500/600], Loss: 0.0049 Epoch [55/64], Step [600/600], Loss: 0.0005 Epoch [56/64], Step [100/600], Loss: 0.0008 Epoch [56/64], Step [200/600], Loss: 0.0017 Epoch [56/64], Step [300/600], Loss: 0.0013 Epoch [56/64], Step [400/600], Loss: 0.0007 Epoch [56/64], Step [500/600], Loss: 0.0005 Epoch [56/64], Step [600/600], Loss: 0.0001 Epoch [57/64], Step [100/600], Loss: 0.0002 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0006 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0001 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0003 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0004 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0001 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 370.899 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins6326937590972135427.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS