Skip to content
Success

Console Output

Started by timer
Running as SYSTEM
Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace
[SSH] script:
TARGETNODE=""""

module load anaconda3_gpu/4.13.0
module load cuda/11.7.0

cd pytorch_train
rm -f train_results_jenkins.csv

# Slurm Arguments
sargs="--nodes=1 "
sargs+="--ntasks-per-node=1 "
sargs+="--mem=16g "
sargs+="--time=00:10:00 "
sargs+="--account=bbmb-hydro "
sargs+="--gpus-per-node=1 "
sargs+="--gpu-bind=closest "
# Add Target node if it exists
if [[ ! -z ${TARGETNODE} ]]
then
    PARTITION=`sinfo --format="%R,%N" -n hydro61  | grep hydro61  | cut -d',' -f1 | tail -1`
    sargs+="--partition=${PARTITION} "
    sargs+="--nodelist=${TARGETNODE} "
else
    sargs+="--partition=a100 "
fi
# Executable to run
scmd="python train.py | tee time.txt"

# Run the command
start_time=`date +%s.%N`
echo $"Starting srun with command"
echo "srun $sargs $scmd"
srun $sargs $scmd
end_time=`date +%s.%N`

runtime=$( echo "$end_time - $start_time" | bc -l )
echo "YVALUE=$runtime" > time.txt
printf "Pytorch test completed in %0.3f secs\n" $runtime

[SSH] executing...
Starting srun with command
srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100  python train.py | tee time.txt
srun: job 98775 queued and waiting for resources
srun: job 98775 has been allocated resources
Running benchmark on hydro03
Epoch [1/64], Step [100/600], Loss: 0.2084
Epoch [1/64], Step [200/600], Loss: 0.1431
Epoch [1/64], Step [300/600], Loss: 0.1361
Epoch [1/64], Step [400/600], Loss: 0.0982
Epoch [1/64], Step [500/600], Loss: 0.0569
Epoch [1/64], Step [600/600], Loss: 0.0847
Epoch [2/64], Step [100/600], Loss: 0.0806
Epoch [2/64], Step [200/600], Loss: 0.0563
Epoch [2/64], Step [300/600], Loss: 0.0500
Epoch [2/64], Step [400/600], Loss: 0.0233
Epoch [2/64], Step [500/600], Loss: 0.0657
Epoch [2/64], Step [600/600], Loss: 0.0428
Epoch [3/64], Step [100/600], Loss: 0.0396
Epoch [3/64], Step [200/600], Loss: 0.0363
Epoch [3/64], Step [300/600], Loss: 0.0590
Epoch [3/64], Step [400/600], Loss: 0.0398
Epoch [3/64], Step [500/600], Loss: 0.0301
Epoch [3/64], Step [600/600], Loss: 0.0289
Epoch [4/64], Step [100/600], Loss: 0.0181
Epoch [4/64], Step [200/600], Loss: 0.0158
Epoch [4/64], Step [300/600], Loss: 0.0606
Epoch [4/64], Step [400/600], Loss: 0.0054
Epoch [4/64], Step [500/600], Loss: 0.0615
Epoch [4/64], Step [600/600], Loss: 0.0629
Epoch [5/64], Step [100/600], Loss: 0.0061
Epoch [5/64], Step [200/600], Loss: 0.0131
Epoch [5/64], Step [300/600], Loss: 0.0480
Epoch [5/64], Step [400/600], Loss: 0.0374
Epoch [5/64], Step [500/600], Loss: 0.0100
Epoch [5/64], Step [600/600], Loss: 0.0673
Epoch [6/64], Step [100/600], Loss: 0.0054
Epoch [6/64], Step [200/600], Loss: 0.0120
Epoch [6/64], Step [300/600], Loss: 0.1153
Epoch [6/64], Step [400/600], Loss: 0.0047
Epoch [6/64], Step [500/600], Loss: 0.0190
Epoch [6/64], Step [600/600], Loss: 0.0139
Epoch [7/64], Step [100/600], Loss: 0.0179
Epoch [7/64], Step [200/600], Loss: 0.0255
Epoch [7/64], Step [300/600], Loss: 0.0015
Epoch [7/64], Step [400/600], Loss: 0.0098
Epoch [7/64], Step [500/600], Loss: 0.0110
Epoch [7/64], Step [600/600], Loss: 0.0163
Epoch [8/64], Step [100/600], Loss: 0.0049
Epoch [8/64], Step [200/600], Loss: 0.0516
Epoch [8/64], Step [300/600], Loss: 0.0101
Epoch [8/64], Step [400/600], Loss: 0.0190
Epoch [8/64], Step [500/600], Loss: 0.0597
Epoch [8/64], Step [600/600], Loss: 0.0128
Epoch [9/64], Step [100/600], Loss: 0.0172
Epoch [9/64], Step [200/600], Loss: 0.0549
Epoch [9/64], Step [300/600], Loss: 0.0010
Epoch [9/64], Step [400/600], Loss: 0.0278
Epoch [9/64], Step [500/600], Loss: 0.0799
Epoch [9/64], Step [600/600], Loss: 0.0281
Epoch [10/64], Step [100/600], Loss: 0.0114
Epoch [10/64], Step [200/600], Loss: 0.0355
Epoch [10/64], Step [300/600], Loss: 0.0166
Epoch [10/64], Step [400/600], Loss: 0.0112
Epoch [10/64], Step [500/600], Loss: 0.0195
Epoch [10/64], Step [600/600], Loss: 0.0122
Epoch [11/64], Step [100/600], Loss: 0.0196
Epoch [11/64], Step [200/600], Loss: 0.0050
Epoch [11/64], Step [300/600], Loss: 0.0064
Epoch [11/64], Step [400/600], Loss: 0.0013
Epoch [11/64], Step [500/600], Loss: 0.0431
Epoch [11/64], Step [600/600], Loss: 0.0091
Epoch [12/64], Step [100/600], Loss: 0.0071
Epoch [12/64], Step [200/600], Loss: 0.0055
Epoch [12/64], Step [300/600], Loss: 0.0006
Epoch [12/64], Step [400/600], Loss: 0.0090
Epoch [12/64], Step [500/600], Loss: 0.0197
Epoch [12/64], Step [600/600], Loss: 0.0110
Epoch [13/64], Step [100/600], Loss: 0.0350
Epoch [13/64], Step [200/600], Loss: 0.0039
Epoch [13/64], Step [300/600], Loss: 0.0072
Epoch [13/64], Step [400/600], Loss: 0.0036
Epoch [13/64], Step [500/600], Loss: 0.0119
Epoch [13/64], Step [600/600], Loss: 0.0109
Epoch [14/64], Step [100/600], Loss: 0.0003
Epoch [14/64], Step [200/600], Loss: 0.0011
Epoch [14/64], Step [300/600], Loss: 0.0068
Epoch [14/64], Step [400/600], Loss: 0.0009
Epoch [14/64], Step [500/600], Loss: 0.0161
Epoch [14/64], Step [600/600], Loss: 0.0033
Epoch [15/64], Step [100/600], Loss: 0.0012
Epoch [15/64], Step [200/600], Loss: 0.0002
Epoch [15/64], Step [300/600], Loss: 0.0144
Epoch [15/64], Step [400/600], Loss: 0.0018
Epoch [15/64], Step [500/600], Loss: 0.0027
Epoch [15/64], Step [600/600], Loss: 0.0053
Epoch [16/64], Step [100/600], Loss: 0.0047
Epoch [16/64], Step [200/600], Loss: 0.0013
Epoch [16/64], Step [300/600], Loss: 0.0154
Epoch [16/64], Step [400/600], Loss: 0.0024
Epoch [16/64], Step [500/600], Loss: 0.0001
Epoch [16/64], Step [600/600], Loss: 0.0261
Epoch [17/64], Step [100/600], Loss: 0.0061
Epoch [17/64], Step [200/600], Loss: 0.0012
Epoch [17/64], Step [300/600], Loss: 0.0015
Epoch [17/64], Step [400/600], Loss: 0.0164
Epoch [17/64], Step [500/600], Loss: 0.0288
Epoch [17/64], Step [600/600], Loss: 0.0011
Epoch [18/64], Step [100/600], Loss: 0.0009
Epoch [18/64], Step [200/600], Loss: 0.0028
Epoch [18/64], Step [300/600], Loss: 0.0008
Epoch [18/64], Step [400/600], Loss: 0.0049
Epoch [18/64], Step [500/600], Loss: 0.0005
Epoch [18/64], Step [600/600], Loss: 0.0002
Epoch [19/64], Step [100/600], Loss: 0.0011
Epoch [19/64], Step [200/600], Loss: 0.0009
Epoch [19/64], Step [300/600], Loss: 0.0038
Epoch [19/64], Step [400/600], Loss: 0.0005
Epoch [19/64], Step [500/600], Loss: 0.0004
Epoch [19/64], Step [600/600], Loss: 0.0047
Epoch [20/64], Step [100/600], Loss: 0.0150
Epoch [20/64], Step [200/600], Loss: 0.0005
Epoch [20/64], Step [300/600], Loss: 0.0031
Epoch [20/64], Step [400/600], Loss: 0.0004
Epoch [20/64], Step [500/600], Loss: 0.0013
Epoch [20/64], Step [600/600], Loss: 0.0005
Epoch [21/64], Step [100/600], Loss: 0.0007
Epoch [21/64], Step [200/600], Loss: 0.0043
Epoch [21/64], Step [300/600], Loss: 0.0008
Epoch [21/64], Step [400/600], Loss: 0.0135
Epoch [21/64], Step [500/600], Loss: 0.0004
Epoch [21/64], Step [600/600], Loss: 0.0110
Epoch [22/64], Step [100/600], Loss: 0.0004
Epoch [22/64], Step [200/600], Loss: 0.0000
Epoch [22/64], Step [300/600], Loss: 0.0001
Epoch [22/64], Step [400/600], Loss: 0.0021
Epoch [22/64], Step [500/600], Loss: 0.0082
Epoch [22/64], Step [600/600], Loss: 0.0014
Epoch [23/64], Step [100/600], Loss: 0.0001
Epoch [23/64], Step [200/600], Loss: 0.0373
Epoch [23/64], Step [300/600], Loss: 0.0004
Epoch [23/64], Step [400/600], Loss: 0.0030
Epoch [23/64], Step [500/600], Loss: 0.0141
Epoch [23/64], Step [600/600], Loss: 0.0001
Epoch [24/64], Step [100/600], Loss: 0.0019
Epoch [24/64], Step [200/600], Loss: 0.0004
Epoch [24/64], Step [300/600], Loss: 0.0006
Epoch [24/64], Step [400/600], Loss: 0.0002
Epoch [24/64], Step [500/600], Loss: 0.0066
Epoch [24/64], Step [600/600], Loss: 0.0010
Epoch [25/64], Step [100/600], Loss: 0.0011
Epoch [25/64], Step [200/600], Loss: 0.0005
Epoch [25/64], Step [300/600], Loss: 0.0002
Epoch [25/64], Step [400/600], Loss: 0.0006
Epoch [25/64], Step [500/600], Loss: 0.0201
Epoch [25/64], Step [600/600], Loss: 0.0016
Epoch [26/64], Step [100/600], Loss: 0.0014
Epoch [26/64], Step [200/600], Loss: 0.0002
Epoch [26/64], Step [300/600], Loss: 0.0003
Epoch [26/64], Step [400/600], Loss: 0.0003
Epoch [26/64], Step [500/600], Loss: 0.0007
Epoch [26/64], Step [600/600], Loss: 0.0223
Epoch [27/64], Step [100/600], Loss: 0.0152
Epoch [27/64], Step [200/600], Loss: 0.0053
Epoch [27/64], Step [300/600], Loss: 0.0014
Epoch [27/64], Step [400/600], Loss: 0.0001
Epoch [27/64], Step [500/600], Loss: 0.0002
Epoch [27/64], Step [600/600], Loss: 0.0002
Epoch [28/64], Step [100/600], Loss: 0.0004
Epoch [28/64], Step [200/600], Loss: 0.0042
Epoch [28/64], Step [300/600], Loss: 0.0012
Epoch [28/64], Step [400/600], Loss: 0.0001
Epoch [28/64], Step [500/600], Loss: 0.0001
Epoch [28/64], Step [600/600], Loss: 0.0027
Epoch [29/64], Step [100/600], Loss: 0.0001
Epoch [29/64], Step [200/600], Loss: 0.0002
Epoch [29/64], Step [300/600], Loss: 0.0004
Epoch [29/64], Step [400/600], Loss: 0.0006
Epoch [29/64], Step [500/600], Loss: 0.0006
Epoch [29/64], Step [600/600], Loss: 0.0003
Epoch [30/64], Step [100/600], Loss: 0.0008
Epoch [30/64], Step [200/600], Loss: 0.0004
Epoch [30/64], Step [300/600], Loss: 0.0007
Epoch [30/64], Step [400/600], Loss: 0.0001
Epoch [30/64], Step [500/600], Loss: 0.0038
Epoch [30/64], Step [600/600], Loss: 0.0001
Epoch [31/64], Step [100/600], Loss: 0.0154
Epoch [31/64], Step [200/600], Loss: 0.0010
Epoch [31/64], Step [300/600], Loss: 0.0117
Epoch [31/64], Step [400/600], Loss: 0.0003
Epoch [31/64], Step [500/600], Loss: 0.0001
Epoch [31/64], Step [600/600], Loss: 0.0001
Epoch [32/64], Step [100/600], Loss: 0.0004
Epoch [32/64], Step [200/600], Loss: 0.0013
Epoch [32/64], Step [300/600], Loss: 0.0001
Epoch [32/64], Step [400/600], Loss: 0.0002
Epoch [32/64], Step [500/600], Loss: 0.0000
Epoch [32/64], Step [600/600], Loss: 0.0008
Epoch [33/64], Step [100/600], Loss: 0.0000
Epoch [33/64], Step [200/600], Loss: 0.0000
Epoch [33/64], Step [300/600], Loss: 0.0000
Epoch [33/64], Step [400/600], Loss: 0.0006
Epoch [33/64], Step [500/600], Loss: 0.0004
Epoch [33/64], Step [600/600], Loss: 0.0001
Epoch [34/64], Step [100/600], Loss: 0.0001
Epoch [34/64], Step [200/600], Loss: 0.0000
Epoch [34/64], Step [300/600], Loss: 0.0000
Epoch [34/64], Step [400/600], Loss: 0.0001
Epoch [34/64], Step [500/600], Loss: 0.0001
Epoch [34/64], Step [600/600], Loss: 0.0001
Epoch [35/64], Step [100/600], Loss: 0.0000
Epoch [35/64], Step [200/600], Loss: 0.0001
Epoch [35/64], Step [300/600], Loss: 0.0000
Epoch [35/64], Step [400/600], Loss: 0.0001
Epoch [35/64], Step [500/600], Loss: 0.0002
Epoch [35/64], Step [600/600], Loss: 0.0000
Epoch [36/64], Step [100/600], Loss: 0.0000
Epoch [36/64], Step [200/600], Loss: 0.0002
Epoch [36/64], Step [300/600], Loss: 0.0002
Epoch [36/64], Step [400/600], Loss: 0.0000
Epoch [36/64], Step [500/600], Loss: 0.0004
Epoch [36/64], Step [600/600], Loss: 0.0001
Epoch [37/64], Step [100/600], Loss: 0.0001
Epoch [37/64], Step [200/600], Loss: 0.0000
Epoch [37/64], Step [300/600], Loss: 0.0001
Epoch [37/64], Step [400/600], Loss: 0.0001
Epoch [37/64], Step [500/600], Loss: 0.0000
Epoch [37/64], Step [600/600], Loss: 0.0000
Epoch [38/64], Step [100/600], Loss: 0.0002
Epoch [38/64], Step [200/600], Loss: 0.0000
Epoch [38/64], Step [300/600], Loss: 0.0000
Epoch [38/64], Step [400/600], Loss: 0.0000
Epoch [38/64], Step [500/600], Loss: 0.0001
Epoch [38/64], Step [600/600], Loss: 0.0000
Epoch [39/64], Step [100/600], Loss: 0.0065
Epoch [39/64], Step [200/600], Loss: 0.0105
Epoch [39/64], Step [300/600], Loss: 0.0015
Epoch [39/64], Step [400/600], Loss: 0.0015
Epoch [39/64], Step [500/600], Loss: 0.0011
Epoch [39/64], Step [600/600], Loss: 0.0002
Epoch [40/64], Step [100/600], Loss: 0.0007
Epoch [40/64], Step [200/600], Loss: 0.0004
Epoch [40/64], Step [300/600], Loss: 0.0002
Epoch [40/64], Step [400/600], Loss: 0.0005
Epoch [40/64], Step [500/600], Loss: 0.0038
Epoch [40/64], Step [600/600], Loss: 0.0001
Epoch [41/64], Step [100/600], Loss: 0.0000
Epoch [41/64], Step [200/600], Loss: 0.0001
Epoch [41/64], Step [300/600], Loss: 0.0002
Epoch [41/64], Step [400/600], Loss: 0.0004
Epoch [41/64], Step [500/600], Loss: 0.0000
Epoch [41/64], Step [600/600], Loss: 0.0005
Epoch [42/64], Step [100/600], Loss: 0.0001
Epoch [42/64], Step [200/600], Loss: 0.0002
Epoch [42/64], Step [300/600], Loss: 0.0001
Epoch [42/64], Step [400/600], Loss: 0.0000
Epoch [42/64], Step [500/600], Loss: 0.0000
Epoch [42/64], Step [600/600], Loss: 0.0003
Epoch [43/64], Step [100/600], Loss: 0.0000
Epoch [43/64], Step [200/600], Loss: 0.0000
Epoch [43/64], Step [300/600], Loss: 0.0000
Epoch [43/64], Step [400/600], Loss: 0.0001
Epoch [43/64], Step [500/600], Loss: 0.0000
Epoch [43/64], Step [600/600], Loss: 0.0000
Epoch [44/64], Step [100/600], Loss: 0.0001
Epoch [44/64], Step [200/600], Loss: 0.0001
Epoch [44/64], Step [300/600], Loss: 0.0002
Epoch [44/64], Step [400/600], Loss: 0.0001
Epoch [44/64], Step [500/600], Loss: 0.0000
Epoch [44/64], Step [600/600], Loss: 0.0000
Epoch [45/64], Step [100/600], Loss: 0.0001
Epoch [45/64], Step [200/600], Loss: 0.0001
Epoch [45/64], Step [300/600], Loss: 0.0000
Epoch [45/64], Step [400/600], Loss: 0.0000
Epoch [45/64], Step [500/600], Loss: 0.0000
Epoch [45/64], Step [600/600], Loss: 0.0001
Epoch [46/64], Step [100/600], Loss: 0.0002
Epoch [46/64], Step [200/600], Loss: 0.0000
Epoch [46/64], Step [300/600], Loss: 0.0001
Epoch [46/64], Step [400/600], Loss: 0.0000
Epoch [46/64], Step [500/600], Loss: 0.0001
Epoch [46/64], Step [600/600], Loss: 0.0923
Epoch [47/64], Step [100/600], Loss: 0.0262
Epoch [47/64], Step [200/600], Loss: 0.0025
Epoch [47/64], Step [300/600], Loss: 0.0000
Epoch [47/64], Step [400/600], Loss: 0.0011
Epoch [47/64], Step [500/600], Loss: 0.0001
Epoch [47/64], Step [600/600], Loss: 0.0004
Epoch [48/64], Step [100/600], Loss: 0.0009
Epoch [48/64], Step [200/600], Loss: 0.0004
Epoch [48/64], Step [300/600], Loss: 0.0001
Epoch [48/64], Step [400/600], Loss: 0.0003
Epoch [48/64], Step [500/600], Loss: 0.0000
Epoch [48/64], Step [600/600], Loss: 0.0000
Epoch [49/64], Step [100/600], Loss: 0.0002
Epoch [49/64], Step [200/600], Loss: 0.0006
Epoch [49/64], Step [300/600], Loss: 0.0000
Epoch [49/64], Step [400/600], Loss: 0.0002
Epoch [49/64], Step [500/600], Loss: 0.0000
Epoch [49/64], Step [600/600], Loss: 0.0001
Epoch [50/64], Step [100/600], Loss: 0.0001
Epoch [50/64], Step [200/600], Loss: 0.0001
Epoch [50/64], Step [300/600], Loss: 0.0000
Epoch [50/64], Step [400/600], Loss: 0.0000
Epoch [50/64], Step [500/600], Loss: 0.0001
Epoch [50/64], Step [600/600], Loss: 0.0003
Epoch [51/64], Step [100/600], Loss: 0.0001
Epoch [51/64], Step [200/600], Loss: 0.0002
Epoch [51/64], Step [300/600], Loss: 0.0001
Epoch [51/64], Step [400/600], Loss: 0.0000
Epoch [51/64], Step [500/600], Loss: 0.0000
Epoch [51/64], Step [600/600], Loss: 0.0000
Epoch [52/64], Step [100/600], Loss: 0.0000
Epoch [52/64], Step [200/600], Loss: 0.0000
Epoch [52/64], Step [300/600], Loss: 0.0000
Epoch [52/64], Step [400/600], Loss: 0.0000
Epoch [52/64], Step [500/600], Loss: 0.0001
Epoch [52/64], Step [600/600], Loss: 0.0001
Epoch [53/64], Step [100/600], Loss: 0.0000
Epoch [53/64], Step [200/600], Loss: 0.0000
Epoch [53/64], Step [300/600], Loss: 0.0000
Epoch [53/64], Step [400/600], Loss: 0.0001
Epoch [53/64], Step [500/600], Loss: 0.0000
Epoch [53/64], Step [600/600], Loss: 0.0001
Epoch [54/64], Step [100/600], Loss: 0.0000
Epoch [54/64], Step [200/600], Loss: 0.0000
Epoch [54/64], Step [300/600], Loss: 0.0000
Epoch [54/64], Step [400/600], Loss: 0.0000
Epoch [54/64], Step [500/600], Loss: 0.0000
Epoch [54/64], Step [600/600], Loss: 0.0001
Epoch [55/64], Step [100/600], Loss: 0.0000
Epoch [55/64], Step [200/600], Loss: 0.0000
Epoch [55/64], Step [300/600], Loss: 0.0002
Epoch [55/64], Step [400/600], Loss: 0.0016
Epoch [55/64], Step [500/600], Loss: 0.0049
Epoch [55/64], Step [600/600], Loss: 0.0005
Epoch [56/64], Step [100/600], Loss: 0.0008
Epoch [56/64], Step [200/600], Loss: 0.0017
Epoch [56/64], Step [300/600], Loss: 0.0013
Epoch [56/64], Step [400/600], Loss: 0.0007
Epoch [56/64], Step [500/600], Loss: 0.0005
Epoch [56/64], Step [600/600], Loss: 0.0001
Epoch [57/64], Step [100/600], Loss: 0.0002
Epoch [57/64], Step [200/600], Loss: 0.0001
Epoch [57/64], Step [300/600], Loss: 0.0000
Epoch [57/64], Step [400/600], Loss: 0.0000
Epoch [57/64], Step [500/600], Loss: 0.0001
Epoch [57/64], Step [600/600], Loss: 0.0006
Epoch [58/64], Step [100/600], Loss: 0.0000
Epoch [58/64], Step [200/600], Loss: 0.0000
Epoch [58/64], Step [300/600], Loss: 0.0000
Epoch [58/64], Step [400/600], Loss: 0.0000
Epoch [58/64], Step [500/600], Loss: 0.0000
Epoch [58/64], Step [600/600], Loss: 0.0000
Epoch [59/64], Step [100/600], Loss: 0.0001
Epoch [59/64], Step [200/600], Loss: 0.0000
Epoch [59/64], Step [300/600], Loss: 0.0001
Epoch [59/64], Step [400/600], Loss: 0.0001
Epoch [59/64], Step [500/600], Loss: 0.0000
Epoch [59/64], Step [600/600], Loss: 0.0000
Epoch [60/64], Step [100/600], Loss: 0.0003
Epoch [60/64], Step [200/600], Loss: 0.0000
Epoch [60/64], Step [300/600], Loss: 0.0000
Epoch [60/64], Step [400/600], Loss: 0.0000
Epoch [60/64], Step [500/600], Loss: 0.0001
Epoch [60/64], Step [600/600], Loss: 0.0000
Epoch [61/64], Step [100/600], Loss: 0.0000
Epoch [61/64], Step [200/600], Loss: 0.0004
Epoch [61/64], Step [300/600], Loss: 0.0000
Epoch [61/64], Step [400/600], Loss: 0.0000
Epoch [61/64], Step [500/600], Loss: 0.0000
Epoch [61/64], Step [600/600], Loss: 0.0001
Epoch [62/64], Step [100/600], Loss: 0.0001
Epoch [62/64], Step [200/600], Loss: 0.0000
Epoch [62/64], Step [300/600], Loss: 0.0000
Epoch [62/64], Step [400/600], Loss: 0.0000
Epoch [62/64], Step [500/600], Loss: 0.0000
Epoch [62/64], Step [600/600], Loss: 0.0000
Epoch [63/64], Step [100/600], Loss: 0.0000
Epoch [63/64], Step [200/600], Loss: 0.0000
Epoch [63/64], Step [300/600], Loss: 0.0000
Epoch [63/64], Step [400/600], Loss: 0.0000
Epoch [63/64], Step [500/600], Loss: 0.0000
Epoch [63/64], Step [600/600], Loss: 0.0000
Epoch [64/64], Step [100/600], Loss: 0.0001
Epoch [64/64], Step [200/600], Loss: 0.0000
Epoch [64/64], Step [300/600], Loss: 0.0000
Epoch [64/64], Step [400/600], Loss: 0.0001
Epoch [64/64], Step [500/600], Loss: 0.0000
Epoch [64/64], Step [600/600], Loss: 0.0000
Pytorch test completed in 370.899 secs

[SSH] completed
[SSH] exit-status: 0

[workspace] $ /bin/sh -xe /tmp/jenkins6326937590972135427.sh
+ scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace
Recording plot data
Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt
Finished: SUCCESS