Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 95693 queued and waiting for resources srun: job 95693 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2472 Epoch [1/64], Step [200/600], Loss: 0.0748 Epoch [1/64], Step [300/600], Loss: 0.1228 Epoch [1/64], Step [400/600], Loss: 0.0543 Epoch [1/64], Step [500/600], Loss: 0.0575 Epoch [1/64], Step [600/600], Loss: 0.1195 Epoch [2/64], Step [100/600], Loss: 0.0327 Epoch [2/64], Step [200/600], Loss: 0.1201 Epoch [2/64], Step [300/600], Loss: 0.1269 Epoch [2/64], Step [400/600], Loss: 0.0558 Epoch [2/64], Step [500/600], Loss: 0.0121 Epoch [2/64], Step [600/600], Loss: 0.0389 Epoch [3/64], Step [100/600], Loss: 0.0264 Epoch [3/64], Step [200/600], Loss: 0.0384 Epoch [3/64], Step [300/600], Loss: 0.0440 Epoch [3/64], Step [400/600], Loss: 0.0768 Epoch [3/64], Step [500/600], Loss: 0.0263 Epoch [3/64], Step [600/600], Loss: 0.1165 Epoch [4/64], Step [100/600], Loss: 0.0226 Epoch [4/64], Step [200/600], Loss: 0.0348 Epoch [4/64], Step [300/600], Loss: 0.0139 Epoch [4/64], Step [400/600], Loss: 0.0198 Epoch [4/64], Step [500/600], Loss: 0.0045 Epoch [4/64], Step [600/600], Loss: 0.0209 Epoch [5/64], Step [100/600], Loss: 0.0440 Epoch [5/64], Step [200/600], Loss: 0.0896 Epoch [5/64], Step [300/600], Loss: 0.0104 Epoch [5/64], Step [400/600], Loss: 0.0537 Epoch [5/64], Step [500/600], Loss: 0.0133 Epoch [5/64], Step [600/600], Loss: 0.0349 Epoch [6/64], Step [100/600], Loss: 0.0371 Epoch [6/64], Step [200/600], Loss: 0.0505 Epoch [6/64], Step [300/600], Loss: 0.0097 Epoch [6/64], Step [400/600], Loss: 0.0053 Epoch [6/64], Step [500/600], Loss: 0.0720 Epoch [6/64], Step [600/600], Loss: 0.1055 Epoch [7/64], Step [100/600], Loss: 0.0082 Epoch [7/64], Step [200/600], Loss: 0.0061 Epoch [7/64], Step [300/600], Loss: 0.0083 Epoch [7/64], Step [400/600], Loss: 0.0054 Epoch [7/64], Step [500/600], Loss: 0.0220 Epoch [7/64], Step [600/600], Loss: 0.0520 Epoch [8/64], Step [100/600], Loss: 0.0043 Epoch [8/64], Step [200/600], Loss: 0.0289 Epoch [8/64], Step [300/600], Loss: 0.0055 Epoch [8/64], Step [400/600], Loss: 0.0313 Epoch [8/64], Step [500/600], Loss: 0.0101 Epoch [8/64], Step [600/600], Loss: 0.0038 Epoch [9/64], Step [100/600], Loss: 0.0030 Epoch [9/64], Step [200/600], Loss: 0.0357 Epoch [9/64], Step [300/600], Loss: 0.0020 Epoch [9/64], Step [400/600], Loss: 0.0110 Epoch [9/64], Step [500/600], Loss: 0.0054 Epoch [9/64], Step [600/600], Loss: 0.0233 Epoch [10/64], Step [100/600], Loss: 0.0430 Epoch [10/64], Step [200/600], Loss: 0.0013 Epoch [10/64], Step [300/600], Loss: 0.0082 Epoch [10/64], Step [400/600], Loss: 0.0065 Epoch [10/64], Step [500/600], Loss: 0.0025 Epoch [10/64], Step [600/600], Loss: 0.0461 Epoch [11/64], Step [100/600], Loss: 0.0177 Epoch [11/64], Step [200/600], Loss: 0.0131 Epoch [11/64], Step [300/600], Loss: 0.0013 Epoch [11/64], Step [400/600], Loss: 0.0092 Epoch [11/64], Step [500/600], Loss: 0.0088 Epoch [11/64], Step [600/600], Loss: 0.0146 Epoch [12/64], Step [100/600], Loss: 0.0081 Epoch [12/64], Step [200/600], Loss: 0.0040 Epoch [12/64], Step [300/600], Loss: 0.0033 Epoch [12/64], Step [400/600], Loss: 0.0363 Epoch [12/64], Step [500/600], Loss: 0.0098 Epoch [12/64], Step [600/600], Loss: 0.0020 Epoch [13/64], Step [100/600], Loss: 0.0031 Epoch [13/64], Step [200/600], Loss: 0.0004 Epoch [13/64], Step [300/600], Loss: 0.0077 Epoch [13/64], Step [400/600], Loss: 0.0011 Epoch [13/64], Step [500/600], Loss: 0.0046 Epoch [13/64], Step [600/600], Loss: 0.0047 Epoch [14/64], Step [100/600], Loss: 0.0156 Epoch [14/64], Step [200/600], Loss: 0.0009 Epoch [14/64], Step [300/600], Loss: 0.0018 Epoch [14/64], Step [400/600], Loss: 0.0229 Epoch [14/64], Step [500/600], Loss: 0.0007 Epoch [14/64], Step [600/600], Loss: 0.0116 Epoch [15/64], Step [100/600], Loss: 0.0057 Epoch [15/64], Step [200/600], Loss: 0.0058 Epoch [15/64], Step [300/600], Loss: 0.0122 Epoch [15/64], Step [400/600], Loss: 0.0083 Epoch [15/64], Step [500/600], Loss: 0.0114 Epoch [15/64], Step [600/600], Loss: 0.0020 Epoch [16/64], Step [100/600], Loss: 0.0033 Epoch [16/64], Step [200/600], Loss: 0.0011 Epoch [16/64], Step [300/600], Loss: 0.0013 Epoch [16/64], Step [400/600], Loss: 0.0020 Epoch [16/64], Step [500/600], Loss: 0.0094 Epoch [16/64], Step [600/600], Loss: 0.0029 Epoch [17/64], Step [100/600], Loss: 0.0046 Epoch [17/64], Step [200/600], Loss: 0.0031 Epoch [17/64], Step [300/600], Loss: 0.0142 Epoch [17/64], Step [400/600], Loss: 0.0027 Epoch [17/64], Step [500/600], Loss: 0.0007 Epoch [17/64], Step [600/600], Loss: 0.0014 Epoch [18/64], Step [100/600], Loss: 0.0003 Epoch [18/64], Step [200/600], Loss: 0.0035 Epoch [18/64], Step [300/600], Loss: 0.0047 Epoch [18/64], Step [400/600], Loss: 0.0013 Epoch [18/64], Step [500/600], Loss: 0.0006 Epoch [18/64], Step [600/600], Loss: 0.0008 Epoch [19/64], Step [100/600], Loss: 0.0015 Epoch [19/64], Step [200/600], Loss: 0.0131 Epoch [19/64], Step [300/600], Loss: 0.0019 Epoch [19/64], Step [400/600], Loss: 0.0034 Epoch [19/64], Step [500/600], Loss: 0.0155 Epoch [19/64], Step [600/600], Loss: 0.0014 Epoch [20/64], Step [100/600], Loss: 0.0008 Epoch [20/64], Step [200/600], Loss: 0.0018 Epoch [20/64], Step [300/600], Loss: 0.0002 Epoch [20/64], Step [400/600], Loss: 0.0017 Epoch [20/64], Step [500/600], Loss: 0.0007 Epoch [20/64], Step [600/600], Loss: 0.0010 Epoch [21/64], Step [100/600], Loss: 0.0009 Epoch [21/64], Step [200/600], Loss: 0.0063 Epoch [21/64], Step [300/600], Loss: 0.0054 Epoch [21/64], Step [400/600], Loss: 0.0018 Epoch [21/64], Step [500/600], Loss: 0.0014 Epoch [21/64], Step [600/600], Loss: 0.0007 Epoch [22/64], Step [100/600], Loss: 0.0007 Epoch [22/64], Step [200/600], Loss: 0.0001 Epoch [22/64], Step [300/600], Loss: 0.0009 Epoch [22/64], Step [400/600], Loss: 0.0002 Epoch [22/64], Step [500/600], Loss: 0.0010 Epoch [22/64], Step [600/600], Loss: 0.0004 Epoch [23/64], Step [100/600], Loss: 0.0006 Epoch [23/64], Step [200/600], Loss: 0.0011 Epoch [23/64], Step [300/600], Loss: 0.0003 Epoch [23/64], Step [400/600], Loss: 0.0035 Epoch [23/64], Step [500/600], Loss: 0.0051 Epoch [23/64], Step [600/600], Loss: 0.0011 Epoch [24/64], Step [100/600], Loss: 0.0219 Epoch [24/64], Step [200/600], Loss: 0.0270 Epoch [24/64], Step [300/600], Loss: 0.0181 Epoch [24/64], Step [400/600], Loss: 0.0085 Epoch [24/64], Step [500/600], Loss: 0.0023 Epoch [24/64], Step [600/600], Loss: 0.0008 Epoch [25/64], Step [100/600], Loss: 0.0001 Epoch [25/64], Step [200/600], Loss: 0.0016 Epoch [25/64], Step [300/600], Loss: 0.0007 Epoch [25/64], Step [400/600], Loss: 0.0023 Epoch [25/64], Step [500/600], Loss: 0.0009 Epoch [25/64], Step [600/600], Loss: 0.0016 Epoch [26/64], Step [100/600], Loss: 0.0001 Epoch [26/64], Step [200/600], Loss: 0.0002 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0003 Epoch [26/64], Step [500/600], Loss: 0.0003 Epoch [26/64], Step [600/600], Loss: 0.0003 Epoch [27/64], Step [100/600], Loss: 0.0001 Epoch [27/64], Step [200/600], Loss: 0.0001 Epoch [27/64], Step [300/600], Loss: 0.0001 Epoch [27/64], Step [400/600], Loss: 0.0005 Epoch [27/64], Step [500/600], Loss: 0.0002 Epoch [27/64], Step [600/600], Loss: 0.0000 Epoch [28/64], Step [100/600], Loss: 0.0000 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0000 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0003 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0000 Epoch [29/64], Step [300/600], Loss: 0.0000 Epoch [29/64], Step [400/600], Loss: 0.0004 Epoch [29/64], Step [500/600], Loss: 0.0085 Epoch [29/64], Step [600/600], Loss: 0.0007 Epoch [30/64], Step [100/600], Loss: 0.0012 Epoch [30/64], Step [200/600], Loss: 0.0107 Epoch [30/64], Step [300/600], Loss: 0.0016 Epoch [30/64], Step [400/600], Loss: 0.0012 Epoch [30/64], Step [500/600], Loss: 0.0045 Epoch [30/64], Step [600/600], Loss: 0.0022 Epoch [31/64], Step [100/600], Loss: 0.0002 Epoch [31/64], Step [200/600], Loss: 0.0002 Epoch [31/64], Step [300/600], Loss: 0.0001 Epoch [31/64], Step [400/600], Loss: 0.0002 Epoch [31/64], Step [500/600], Loss: 0.0101 Epoch [31/64], Step [600/600], Loss: 0.0595 Epoch [32/64], Step [100/600], Loss: 0.0002 Epoch [32/64], Step [200/600], Loss: 0.0000 Epoch [32/64], Step [300/600], Loss: 0.0002 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0011 Epoch [32/64], Step [600/600], Loss: 0.0001 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0003 Epoch [33/64], Step [400/600], Loss: 0.0004 Epoch [33/64], Step [500/600], Loss: 0.0020 Epoch [33/64], Step [600/600], Loss: 0.0001 Epoch [34/64], Step [100/600], Loss: 0.0002 Epoch [34/64], Step [200/600], Loss: 0.0004 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0001 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0001 Epoch [35/64], Step [200/600], Loss: 0.0003 Epoch [35/64], Step [300/600], Loss: 0.0001 Epoch [35/64], Step [400/600], Loss: 0.0000 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0001 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0003 Epoch [36/64], Step [400/600], Loss: 0.0003 Epoch [36/64], Step [500/600], Loss: 0.0000 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0000 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0006 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0582 Epoch [37/64], Step [600/600], Loss: 0.0031 Epoch [38/64], Step [100/600], Loss: 0.0189 Epoch [38/64], Step [200/600], Loss: 0.0020 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0002 Epoch [38/64], Step [500/600], Loss: 0.0030 Epoch [38/64], Step [600/600], Loss: 0.0003 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0015 Epoch [39/64], Step [300/600], Loss: 0.0004 Epoch [39/64], Step [400/600], Loss: 0.0002 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0015 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0002 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0004 Epoch [40/64], Step [500/600], Loss: 0.0005 Epoch [40/64], Step [600/600], Loss: 0.0005 Epoch [41/64], Step [100/600], Loss: 0.0003 Epoch [41/64], Step [200/600], Loss: 0.0010 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0010 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0002 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0001 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0002 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0000 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0003 Epoch [44/64], Step [300/600], Loss: 0.0001 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0001 Epoch [44/64], Step [600/600], Loss: 0.0475 Epoch [45/64], Step [100/600], Loss: 0.0086 Epoch [45/64], Step [200/600], Loss: 0.0016 Epoch [45/64], Step [300/600], Loss: 0.0038 Epoch [45/64], Step [400/600], Loss: 0.0025 Epoch [45/64], Step [500/600], Loss: 0.0008 Epoch [45/64], Step [600/600], Loss: 0.0016 Epoch [46/64], Step [100/600], Loss: 0.0028 Epoch [46/64], Step [200/600], Loss: 0.0015 Epoch [46/64], Step [300/600], Loss: 0.0002 Epoch [46/64], Step [400/600], Loss: 0.0142 Epoch [46/64], Step [500/600], Loss: 0.0014 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0010 Epoch [48/64], Step [100/600], Loss: 0.0002 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0001 Epoch [48/64], Step [400/600], Loss: 0.0015 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0002 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0002 Epoch [50/64], Step [200/600], Loss: 0.0001 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0004 Epoch [50/64], Step [500/600], Loss: 0.0002 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0001 Epoch [51/64], Step [300/600], Loss: 0.0001 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0000 Epoch [52/64], Step [200/600], Loss: 0.0015 Epoch [52/64], Step [300/600], Loss: 0.0001 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0001 Epoch [53/64], Step [100/600], Loss: 0.0001 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0001 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0001 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0001 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0001 Epoch [56/64], Step [100/600], Loss: 0.0519 Epoch [56/64], Step [200/600], Loss: 0.0020 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0024 Epoch [56/64], Step [600/600], Loss: 0.0023 Epoch [57/64], Step [100/600], Loss: 0.0000 Epoch [57/64], Step [200/600], Loss: 0.0003 Epoch [57/64], Step [300/600], Loss: 0.0004 Epoch [57/64], Step [400/600], Loss: 0.0002 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0000 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0002 Epoch [58/64], Step [400/600], Loss: 0.0003 Epoch [58/64], Step [500/600], Loss: 0.0001 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0002 Epoch [59/64], Step [200/600], Loss: 0.0002 Epoch [59/64], Step [300/600], Loss: 0.0001 Epoch [59/64], Step [400/600], Loss: 0.0001 Epoch [59/64], Step [500/600], Loss: 0.0001 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0001 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0002 Epoch [61/64], Step [500/600], Loss: 0.0003 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0001 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0001 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0000 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 447.064 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins3164521535619822631.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS