Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 95738 queued and waiting for resources srun: job 95738 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.1890 Epoch [1/64], Step [200/600], Loss: 0.1164 Epoch [1/64], Step [300/600], Loss: 0.1190 Epoch [1/64], Step [400/600], Loss: 0.0599 Epoch [1/64], Step [500/600], Loss: 0.0578 Epoch [1/64], Step [600/600], Loss: 0.0368 Epoch [2/64], Step [100/600], Loss: 0.0249 Epoch [2/64], Step [200/600], Loss: 0.0190 Epoch [2/64], Step [300/600], Loss: 0.0889 Epoch [2/64], Step [400/600], Loss: 0.0995 Epoch [2/64], Step [500/600], Loss: 0.0255 Epoch [2/64], Step [600/600], Loss: 0.0923 Epoch [3/64], Step [100/600], Loss: 0.0100 Epoch [3/64], Step [200/600], Loss: 0.0364 Epoch [3/64], Step [300/600], Loss: 0.0828 Epoch [3/64], Step [400/600], Loss: 0.0333 Epoch [3/64], Step [500/600], Loss: 0.0204 Epoch [3/64], Step [600/600], Loss: 0.0387 Epoch [4/64], Step [100/600], Loss: 0.0135 Epoch [4/64], Step [200/600], Loss: 0.0317 Epoch [4/64], Step [300/600], Loss: 0.0206 Epoch [4/64], Step [400/600], Loss: 0.0241 Epoch [4/64], Step [500/600], Loss: 0.0173 Epoch [4/64], Step [600/600], Loss: 0.0174 Epoch [5/64], Step [100/600], Loss: 0.0415 Epoch [5/64], Step [200/600], Loss: 0.0168 Epoch [5/64], Step [300/600], Loss: 0.0082 Epoch [5/64], Step [400/600], Loss: 0.0393 Epoch [5/64], Step [500/600], Loss: 0.0145 Epoch [5/64], Step [600/600], Loss: 0.0244 Epoch [6/64], Step [100/600], Loss: 0.0103 Epoch [6/64], Step [200/600], Loss: 0.0475 Epoch [6/64], Step [300/600], Loss: 0.0146 Epoch [6/64], Step [400/600], Loss: 0.0233 Epoch [6/64], Step [500/600], Loss: 0.0112 Epoch [6/64], Step [600/600], Loss: 0.0452 Epoch [7/64], Step [100/600], Loss: 0.0135 Epoch [7/64], Step [200/600], Loss: 0.0059 Epoch [7/64], Step [300/600], Loss: 0.0098 Epoch [7/64], Step [400/600], Loss: 0.0294 Epoch [7/64], Step [500/600], Loss: 0.0059 Epoch [7/64], Step [600/600], Loss: 0.0218 Epoch [8/64], Step [100/600], Loss: 0.0056 Epoch [8/64], Step [200/600], Loss: 0.0027 Epoch [8/64], Step [300/600], Loss: 0.0390 Epoch [8/64], Step [400/600], Loss: 0.0010 Epoch [8/64], Step [500/600], Loss: 0.0718 Epoch [8/64], Step [600/600], Loss: 0.0147 Epoch [9/64], Step [100/600], Loss: 0.0125 Epoch [9/64], Step [200/600], Loss: 0.0036 Epoch [9/64], Step [300/600], Loss: 0.0094 Epoch [9/64], Step [400/600], Loss: 0.0014 Epoch [9/64], Step [500/600], Loss: 0.0407 Epoch [9/64], Step [600/600], Loss: 0.0008 Epoch [10/64], Step [100/600], Loss: 0.0057 Epoch [10/64], Step [200/600], Loss: 0.0186 Epoch [10/64], Step [300/600], Loss: 0.0051 Epoch [10/64], Step [400/600], Loss: 0.0090 Epoch [10/64], Step [500/600], Loss: 0.2178 Epoch [10/64], Step [600/600], Loss: 0.0027 Epoch [11/64], Step [100/600], Loss: 0.0006 Epoch [11/64], Step [200/600], Loss: 0.0243 Epoch [11/64], Step [300/600], Loss: 0.0114 Epoch [11/64], Step [400/600], Loss: 0.0085 Epoch [11/64], Step [500/600], Loss: 0.0134 Epoch [11/64], Step [600/600], Loss: 0.0131 Epoch [12/64], Step [100/600], Loss: 0.0011 Epoch [12/64], Step [200/600], Loss: 0.0026 Epoch [12/64], Step [300/600], Loss: 0.0398 Epoch [12/64], Step [400/600], Loss: 0.0059 Epoch [12/64], Step [500/600], Loss: 0.0006 Epoch [12/64], Step [600/600], Loss: 0.0048 Epoch [13/64], Step [100/600], Loss: 0.0049 Epoch [13/64], Step [200/600], Loss: 0.0046 Epoch [13/64], Step [300/600], Loss: 0.0004 Epoch [13/64], Step [400/600], Loss: 0.0136 Epoch [13/64], Step [500/600], Loss: 0.0160 Epoch [13/64], Step [600/600], Loss: 0.0023 Epoch [14/64], Step [100/600], Loss: 0.0016 Epoch [14/64], Step [200/600], Loss: 0.0014 Epoch [14/64], Step [300/600], Loss: 0.0025 Epoch [14/64], Step [400/600], Loss: 0.0011 Epoch [14/64], Step [500/600], Loss: 0.0022 Epoch [14/64], Step [600/600], Loss: 0.0039 Epoch [15/64], Step [100/600], Loss: 0.0103 Epoch [15/64], Step [200/600], Loss: 0.0030 Epoch [15/64], Step [300/600], Loss: 0.0017 Epoch [15/64], Step [400/600], Loss: 0.0049 Epoch [15/64], Step [500/600], Loss: 0.0240 Epoch [15/64], Step [600/600], Loss: 0.0116 Epoch [16/64], Step [100/600], Loss: 0.0152 Epoch [16/64], Step [200/600], Loss: 0.0146 Epoch [16/64], Step [300/600], Loss: 0.0030 Epoch [16/64], Step [400/600], Loss: 0.0044 Epoch [16/64], Step [500/600], Loss: 0.0043 Epoch [16/64], Step [600/600], Loss: 0.0041 Epoch [17/64], Step [100/600], Loss: 0.0097 Epoch [17/64], Step [200/600], Loss: 0.0045 Epoch [17/64], Step [300/600], Loss: 0.0011 Epoch [17/64], Step [400/600], Loss: 0.0085 Epoch [17/64], Step [500/600], Loss: 0.0521 Epoch [17/64], Step [600/600], Loss: 0.0066 Epoch [18/64], Step [100/600], Loss: 0.0118 Epoch [18/64], Step [200/600], Loss: 0.0005 Epoch [18/64], Step [300/600], Loss: 0.0008 Epoch [18/64], Step [400/600], Loss: 0.0002 Epoch [18/64], Step [500/600], Loss: 0.0003 Epoch [18/64], Step [600/600], Loss: 0.0002 Epoch [19/64], Step [100/600], Loss: 0.0025 Epoch [19/64], Step [200/600], Loss: 0.0004 Epoch [19/64], Step [300/600], Loss: 0.0011 Epoch [19/64], Step [400/600], Loss: 0.0184 Epoch [19/64], Step [500/600], Loss: 0.0007 Epoch [19/64], Step [600/600], Loss: 0.0125 Epoch [20/64], Step [100/600], Loss: 0.0056 Epoch [20/64], Step [200/600], Loss: 0.0002 Epoch [20/64], Step [300/600], Loss: 0.0003 Epoch [20/64], Step [400/600], Loss: 0.0540 Epoch [20/64], Step [500/600], Loss: 0.0006 Epoch [20/64], Step [600/600], Loss: 0.0148 Epoch [21/64], Step [100/600], Loss: 0.0004 Epoch [21/64], Step [200/600], Loss: 0.0012 Epoch [21/64], Step [300/600], Loss: 0.0002 Epoch [21/64], Step [400/600], Loss: 0.0001 Epoch [21/64], Step [500/600], Loss: 0.0012 Epoch [21/64], Step [600/600], Loss: 0.0044 Epoch [22/64], Step [100/600], Loss: 0.0005 Epoch [22/64], Step [200/600], Loss: 0.0015 Epoch [22/64], Step [300/600], Loss: 0.0071 Epoch [22/64], Step [400/600], Loss: 0.0011 Epoch [22/64], Step [500/600], Loss: 0.0023 Epoch [22/64], Step [600/600], Loss: 0.0023 Epoch [23/64], Step [100/600], Loss: 0.0003 Epoch [23/64], Step [200/600], Loss: 0.0004 Epoch [23/64], Step [300/600], Loss: 0.0019 Epoch [23/64], Step [400/600], Loss: 0.0007 Epoch [23/64], Step [500/600], Loss: 0.0051 Epoch [23/64], Step [600/600], Loss: 0.0005 Epoch [24/64], Step [100/600], Loss: 0.0007 Epoch [24/64], Step [200/600], Loss: 0.0002 Epoch [24/64], Step [300/600], Loss: 0.0004 Epoch [24/64], Step [400/600], Loss: 0.0001 Epoch [24/64], Step [500/600], Loss: 0.0002 Epoch [24/64], Step [600/600], Loss: 0.0006 Epoch [25/64], Step [100/600], Loss: 0.0011 Epoch [25/64], Step [200/600], Loss: 0.0004 Epoch [25/64], Step [300/600], Loss: 0.0011 Epoch [25/64], Step [400/600], Loss: 0.0007 Epoch [25/64], Step [500/600], Loss: 0.0022 Epoch [25/64], Step [600/600], Loss: 0.0046 Epoch [26/64], Step [100/600], Loss: 0.0042 Epoch [26/64], Step [200/600], Loss: 0.0078 Epoch [26/64], Step [300/600], Loss: 0.0019 Epoch [26/64], Step [400/600], Loss: 0.0009 Epoch [26/64], Step [500/600], Loss: 0.0072 Epoch [26/64], Step [600/600], Loss: 0.0028 Epoch [27/64], Step [100/600], Loss: 0.0059 Epoch [27/64], Step [200/600], Loss: 0.0000 Epoch [27/64], Step [300/600], Loss: 0.0042 Epoch [27/64], Step [400/600], Loss: 0.0010 Epoch [27/64], Step [500/600], Loss: 0.0036 Epoch [27/64], Step [600/600], Loss: 0.0000 Epoch [28/64], Step [100/600], Loss: 0.0000 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0008 Epoch [28/64], Step [400/600], Loss: 0.0012 Epoch [28/64], Step [500/600], Loss: 0.0003 Epoch [28/64], Step [600/600], Loss: 0.0004 Epoch [29/64], Step [100/600], Loss: 0.0000 Epoch [29/64], Step [200/600], Loss: 0.0004 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0009 Epoch [29/64], Step [500/600], Loss: 0.0009 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0005 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0000 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0002 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0001 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0004 Epoch [31/64], Step [400/600], Loss: 0.0001 Epoch [31/64], Step [500/600], Loss: 0.0003 Epoch [31/64], Step [600/600], Loss: 0.0001 Epoch [32/64], Step [100/600], Loss: 0.0000 Epoch [32/64], Step [200/600], Loss: 0.0001 Epoch [32/64], Step [300/600], Loss: 0.0002 Epoch [32/64], Step [400/600], Loss: 0.0000 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0001 Epoch [33/64], Step [100/600], Loss: 0.0001 Epoch [33/64], Step [200/600], Loss: 0.0001 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0001 Epoch [33/64], Step [500/600], Loss: 0.0004 Epoch [33/64], Step [600/600], Loss: 0.0008 Epoch [34/64], Step [100/600], Loss: 0.0006 Epoch [34/64], Step [200/600], Loss: 0.0001 Epoch [34/64], Step [300/600], Loss: 0.0001 Epoch [34/64], Step [400/600], Loss: 0.0215 Epoch [34/64], Step [500/600], Loss: 0.0158 Epoch [34/64], Step [600/600], Loss: 0.0003 Epoch [35/64], Step [100/600], Loss: 0.0006 Epoch [35/64], Step [200/600], Loss: 0.0096 Epoch [35/64], Step [300/600], Loss: 0.0004 Epoch [35/64], Step [400/600], Loss: 0.0005 Epoch [35/64], Step [500/600], Loss: 0.0003 Epoch [35/64], Step [600/600], Loss: 0.0020 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0046 Epoch [36/64], Step [300/600], Loss: 0.0000 Epoch [36/64], Step [400/600], Loss: 0.0007 Epoch [36/64], Step [500/600], Loss: 0.0038 Epoch [36/64], Step [600/600], Loss: 0.0012 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0000 Epoch [37/64], Step [300/600], Loss: 0.0001 Epoch [37/64], Step [400/600], Loss: 0.0000 Epoch [37/64], Step [500/600], Loss: 0.0002 Epoch [37/64], Step [600/600], Loss: 0.0000 Epoch [38/64], Step [100/600], Loss: 0.0002 Epoch [38/64], Step [200/600], Loss: 0.0003 Epoch [38/64], Step [300/600], Loss: 0.0000 Epoch [38/64], Step [400/600], Loss: 0.0001 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0000 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0006 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0001 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0000 Epoch [40/64], Step [500/600], Loss: 0.0000 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0001 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0001 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0001 Epoch [41/64], Step [600/600], Loss: 0.0004 Epoch [42/64], Step [100/600], Loss: 0.0000 Epoch [42/64], Step [200/600], Loss: 0.0001 Epoch [42/64], Step [300/600], Loss: 0.0000 Epoch [42/64], Step [400/600], Loss: 0.0000 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0000 Epoch [43/64], Step [100/600], Loss: 0.0000 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0000 Epoch [43/64], Step [400/600], Loss: 0.2510 Epoch [43/64], Step [500/600], Loss: 0.0008 Epoch [43/64], Step [600/600], Loss: 0.0203 Epoch [44/64], Step [100/600], Loss: 0.0001 Epoch [44/64], Step [200/600], Loss: 0.0057 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0110 Epoch [44/64], Step [500/600], Loss: 0.0003 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0002 Epoch [45/64], Step [200/600], Loss: 0.0001 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0000 Epoch [45/64], Step [500/600], Loss: 0.0001 Epoch [45/64], Step [600/600], Loss: 0.0001 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0005 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0000 Epoch [46/64], Step [500/600], Loss: 0.0002 Epoch [46/64], Step [600/600], Loss: 0.0000 Epoch [47/64], Step [100/600], Loss: 0.0001 Epoch [47/64], Step [200/600], Loss: 0.0000 Epoch [47/64], Step [300/600], Loss: 0.0000 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0002 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0003 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0001 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0001 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0002 Epoch [50/64], Step [300/600], Loss: 0.0000 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0001 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0000 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0002 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0001 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0001 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0001 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0001 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0001 Epoch [55/64], Step [200/600], Loss: 0.0000 Epoch [55/64], Step [300/600], Loss: 0.0000 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0022 Epoch [56/64], Step [100/600], Loss: 0.0049 Epoch [56/64], Step [200/600], Loss: 0.0005 Epoch [56/64], Step [300/600], Loss: 0.0001 Epoch [56/64], Step [400/600], Loss: 0.0000 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0000 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0001 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0007 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0005 Epoch [58/64], Step [200/600], Loss: 0.0016 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0001 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0002 Epoch [59/64], Step [400/600], Loss: 0.0002 Epoch [59/64], Step [500/600], Loss: 0.0002 Epoch [59/64], Step [600/600], Loss: 0.0000 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0002 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0000 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0000 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0001 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0001 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0001 Epoch [63/64], Step [500/600], Loss: 0.0001 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0001 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0001 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 448.423 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins13319022373659093866.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS