Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 97819 queued and waiting for resources srun: job 97819 has been allocated resources Running benchmark on hydro03 Epoch [1/64], Step [100/600], Loss: 0.2060 Epoch [1/64], Step [200/600], Loss: 0.2374 Epoch [1/64], Step [300/600], Loss: 0.0878 Epoch [1/64], Step [400/600], Loss: 0.0709 Epoch [1/64], Step [500/600], Loss: 0.1194 Epoch [1/64], Step [600/600], Loss: 0.0577 Epoch [2/64], Step [100/600], Loss: 0.0464 Epoch [2/64], Step [200/600], Loss: 0.0188 Epoch [2/64], Step [300/600], Loss: 0.0285 Epoch [2/64], Step [400/600], Loss: 0.0288 Epoch [2/64], Step [500/600], Loss: 0.0450 Epoch [2/64], Step [600/600], Loss: 0.0490 Epoch [3/64], Step [100/600], Loss: 0.0082 Epoch [3/64], Step [200/600], Loss: 0.0573 Epoch [3/64], Step [300/600], Loss: 0.0222 Epoch [3/64], Step [400/600], Loss: 0.0317 Epoch [3/64], Step [500/600], Loss: 0.0183 Epoch [3/64], Step [600/600], Loss: 0.0067 Epoch [4/64], Step [100/600], Loss: 0.0152 Epoch [4/64], Step [200/600], Loss: 0.0197 Epoch [4/64], Step [300/600], Loss: 0.0204 Epoch [4/64], Step [400/600], Loss: 0.0947 Epoch [4/64], Step [500/600], Loss: 0.0441 Epoch [4/64], Step [600/600], Loss: 0.0275 Epoch [5/64], Step [100/600], Loss: 0.0336 Epoch [5/64], Step [200/600], Loss: 0.0089 Epoch [5/64], Step [300/600], Loss: 0.0218 Epoch [5/64], Step [400/600], Loss: 0.0077 Epoch [5/64], Step [500/600], Loss: 0.0019 Epoch [5/64], Step [600/600], Loss: 0.0134 Epoch [6/64], Step [100/600], Loss: 0.0084 Epoch [6/64], Step [200/600], Loss: 0.0589 Epoch [6/64], Step [300/600], Loss: 0.0007 Epoch [6/64], Step [400/600], Loss: 0.0370 Epoch [6/64], Step [500/600], Loss: 0.0018 Epoch [6/64], Step [600/600], Loss: 0.0202 Epoch [7/64], Step [100/600], Loss: 0.0042 Epoch [7/64], Step [200/600], Loss: 0.0219 Epoch [7/64], Step [300/600], Loss: 0.0466 Epoch [7/64], Step [400/600], Loss: 0.0364 Epoch [7/64], Step [500/600], Loss: 0.0112 Epoch [7/64], Step [600/600], Loss: 0.0079 Epoch [8/64], Step [100/600], Loss: 0.0043 Epoch [8/64], Step [200/600], Loss: 0.0027 Epoch [8/64], Step [300/600], Loss: 0.0259 Epoch [8/64], Step [400/600], Loss: 0.0423 Epoch [8/64], Step [500/600], Loss: 0.0220 Epoch [8/64], Step [600/600], Loss: 0.0121 Epoch [9/64], Step [100/600], Loss: 0.0173 Epoch [9/64], Step [200/600], Loss: 0.0100 Epoch [9/64], Step [300/600], Loss: 0.0078 Epoch [9/64], Step [400/600], Loss: 0.0159 Epoch [9/64], Step [500/600], Loss: 0.0249 Epoch [9/64], Step [600/600], Loss: 0.0081 Epoch [10/64], Step [100/600], Loss: 0.0111 Epoch [10/64], Step [200/600], Loss: 0.0103 Epoch [10/64], Step [300/600], Loss: 0.0025 Epoch [10/64], Step [400/600], Loss: 0.0039 Epoch [10/64], Step [500/600], Loss: 0.0022 Epoch [10/64], Step [600/600], Loss: 0.0196 Epoch [11/64], Step [100/600], Loss: 0.0010 Epoch [11/64], Step [200/600], Loss: 0.0019 Epoch [11/64], Step [300/600], Loss: 0.0033 Epoch [11/64], Step [400/600], Loss: 0.0017 Epoch [11/64], Step [500/600], Loss: 0.0045 Epoch [11/64], Step [600/600], Loss: 0.0021 Epoch [12/64], Step [100/600], Loss: 0.0161 Epoch [12/64], Step [200/600], Loss: 0.0058 Epoch [12/64], Step [300/600], Loss: 0.0115 Epoch [12/64], Step [400/600], Loss: 0.0007 Epoch [12/64], Step [500/600], Loss: 0.0020 Epoch [12/64], Step [600/600], Loss: 0.0460 Epoch [13/64], Step [100/600], Loss: 0.0011 Epoch [13/64], Step [200/600], Loss: 0.0017 Epoch [13/64], Step [300/600], Loss: 0.0136 Epoch [13/64], Step [400/600], Loss: 0.0294 Epoch [13/64], Step [500/600], Loss: 0.0178 Epoch [13/64], Step [600/600], Loss: 0.0051 Epoch [14/64], Step [100/600], Loss: 0.0021 Epoch [14/64], Step [200/600], Loss: 0.0332 Epoch [14/64], Step [300/600], Loss: 0.0043 Epoch [14/64], Step [400/600], Loss: 0.0045 Epoch [14/64], Step [500/600], Loss: 0.0223 Epoch [14/64], Step [600/600], Loss: 0.0002 Epoch [15/64], Step [100/600], Loss: 0.0054 Epoch [15/64], Step [200/600], Loss: 0.0230 Epoch [15/64], Step [300/600], Loss: 0.0123 Epoch [15/64], Step [400/600], Loss: 0.0131 Epoch [15/64], Step [500/600], Loss: 0.0259 Epoch [15/64], Step [600/600], Loss: 0.0111 Epoch [16/64], Step [100/600], Loss: 0.0011 Epoch [16/64], Step [200/600], Loss: 0.0021 Epoch [16/64], Step [300/600], Loss: 0.0091 Epoch [16/64], Step [400/600], Loss: 0.0082 Epoch [16/64], Step [500/600], Loss: 0.0201 Epoch [16/64], Step [600/600], Loss: 0.0031 Epoch [17/64], Step [100/600], Loss: 0.0037 Epoch [17/64], Step [200/600], Loss: 0.0008 Epoch [17/64], Step [300/600], Loss: 0.0041 Epoch [17/64], Step [400/600], Loss: 0.0164 Epoch [17/64], Step [500/600], Loss: 0.0171 Epoch [17/64], Step [600/600], Loss: 0.0019 Epoch [18/64], Step [100/600], Loss: 0.0004 Epoch [18/64], Step [200/600], Loss: 0.0013 Epoch [18/64], Step [300/600], Loss: 0.0024 Epoch [18/64], Step [400/600], Loss: 0.0027 Epoch [18/64], Step [500/600], Loss: 0.0129 Epoch [18/64], Step [600/600], Loss: 0.0068 Epoch [19/64], Step [100/600], Loss: 0.0002 Epoch [19/64], Step [200/600], Loss: 0.0029 Epoch [19/64], Step [300/600], Loss: 0.0174 Epoch [19/64], Step [400/600], Loss: 0.0015 Epoch [19/64], Step [500/600], Loss: 0.0006 Epoch [19/64], Step [600/600], Loss: 0.0003 Epoch [20/64], Step [100/600], Loss: 0.0002 Epoch [20/64], Step [200/600], Loss: 0.0077 Epoch [20/64], Step [300/600], Loss: 0.0005 Epoch [20/64], Step [400/600], Loss: 0.0015 Epoch [20/64], Step [500/600], Loss: 0.0004 Epoch [20/64], Step [600/600], Loss: 0.0163 Epoch [21/64], Step [100/600], Loss: 0.0009 Epoch [21/64], Step [200/600], Loss: 0.0014 Epoch [21/64], Step [300/600], Loss: 0.0010 Epoch [21/64], Step [400/600], Loss: 0.0013 Epoch [21/64], Step [500/600], Loss: 0.0005 Epoch [21/64], Step [600/600], Loss: 0.0027 Epoch [22/64], Step [100/600], Loss: 0.0017 Epoch [22/64], Step [200/600], Loss: 0.0092 Epoch [22/64], Step [300/600], Loss: 0.0020 Epoch [22/64], Step [400/600], Loss: 0.0008 Epoch [22/64], Step [500/600], Loss: 0.0023 Epoch [22/64], Step [600/600], Loss: 0.0013 Epoch [23/64], Step [100/600], Loss: 0.0005 Epoch [23/64], Step [200/600], Loss: 0.0015 Epoch [23/64], Step [300/600], Loss: 0.0005 Epoch [23/64], Step [400/600], Loss: 0.0001 Epoch [23/64], Step [500/600], Loss: 0.0048 Epoch [23/64], Step [600/600], Loss: 0.0013 Epoch [24/64], Step [100/600], Loss: 0.0019 Epoch [24/64], Step [200/600], Loss: 0.0033 Epoch [24/64], Step [300/600], Loss: 0.0008 Epoch [24/64], Step [400/600], Loss: 0.0017 Epoch [24/64], Step [500/600], Loss: 0.0009 Epoch [24/64], Step [600/600], Loss: 0.0065 Epoch [25/64], Step [100/600], Loss: 0.0000 Epoch [25/64], Step [200/600], Loss: 0.0001 Epoch [25/64], Step [300/600], Loss: 0.0011 Epoch [25/64], Step [400/600], Loss: 0.0003 Epoch [25/64], Step [500/600], Loss: 0.0002 Epoch [25/64], Step [600/600], Loss: 0.0003 Epoch [26/64], Step [100/600], Loss: 0.0021 Epoch [26/64], Step [200/600], Loss: 0.0001 Epoch [26/64], Step [300/600], Loss: 0.0005 Epoch [26/64], Step [400/600], Loss: 0.0004 Epoch [26/64], Step [500/600], Loss: 0.0002 Epoch [26/64], Step [600/600], Loss: 0.0000 Epoch [27/64], Step [100/600], Loss: 0.0007 Epoch [27/64], Step [200/600], Loss: 0.0001 Epoch [27/64], Step [300/600], Loss: 0.0003 Epoch [27/64], Step [400/600], Loss: 0.0003 Epoch [27/64], Step [500/600], Loss: 0.0001 Epoch [27/64], Step [600/600], Loss: 0.0002 Epoch [28/64], Step [100/600], Loss: 0.0001 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0013 Epoch [28/64], Step [400/600], Loss: 0.0002 Epoch [28/64], Step [500/600], Loss: 0.0004 Epoch [28/64], Step [600/600], Loss: 0.0002 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0001 Epoch [29/64], Step [400/600], Loss: 0.0002 Epoch [29/64], Step [500/600], Loss: 0.0004 Epoch [29/64], Step [600/600], Loss: 0.0028 Epoch [30/64], Step [100/600], Loss: 0.0001 Epoch [30/64], Step [200/600], Loss: 0.0857 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0027 Epoch [30/64], Step [500/600], Loss: 0.0210 Epoch [30/64], Step [600/600], Loss: 0.0300 Epoch [31/64], Step [100/600], Loss: 0.0007 Epoch [31/64], Step [200/600], Loss: 0.0026 Epoch [31/64], Step [300/600], Loss: 0.0042 Epoch [31/64], Step [400/600], Loss: 0.0003 Epoch [31/64], Step [500/600], Loss: 0.0021 Epoch [31/64], Step [600/600], Loss: 0.0005 Epoch [32/64], Step [100/600], Loss: 0.0011 Epoch [32/64], Step [200/600], Loss: 0.0002 Epoch [32/64], Step [300/600], Loss: 0.0013 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0003 Epoch [32/64], Step [600/600], Loss: 0.0005 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0002 Epoch [33/64], Step [300/600], Loss: 0.0001 Epoch [33/64], Step [400/600], Loss: 0.0003 Epoch [33/64], Step [500/600], Loss: 0.0000 Epoch [33/64], Step [600/600], Loss: 0.0002 Epoch [34/64], Step [100/600], Loss: 0.0002 Epoch [34/64], Step [200/600], Loss: 0.0000 Epoch [34/64], Step [300/600], Loss: 0.0003 Epoch [34/64], Step [400/600], Loss: 0.0003 Epoch [34/64], Step [500/600], Loss: 0.0002 Epoch [34/64], Step [600/600], Loss: 0.0002 Epoch [35/64], Step [100/600], Loss: 0.0000 Epoch [35/64], Step [200/600], Loss: 0.0003 Epoch [35/64], Step [300/600], Loss: 0.0004 Epoch [35/64], Step [400/600], Loss: 0.0002 Epoch [35/64], Step [500/600], Loss: 0.0000 Epoch [35/64], Step [600/600], Loss: 0.0002 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0000 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0002 Epoch [36/64], Step [500/600], Loss: 0.0002 Epoch [36/64], Step [600/600], Loss: 0.0001 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0001 Epoch [37/64], Step [300/600], Loss: 0.0003 Epoch [37/64], Step [400/600], Loss: 0.0001 Epoch [37/64], Step [500/600], Loss: 0.0000 Epoch [37/64], Step [600/600], Loss: 0.0003 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0000 Epoch [38/64], Step [300/600], Loss: 0.0001 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0000 Epoch [39/64], Step [100/600], Loss: 0.0001 Epoch [39/64], Step [200/600], Loss: 0.0001 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0000 Epoch [39/64], Step [500/600], Loss: 0.0001 Epoch [39/64], Step [600/600], Loss: 0.0014 Epoch [40/64], Step [100/600], Loss: 0.0003 Epoch [40/64], Step [200/600], Loss: 0.0127 Epoch [40/64], Step [300/600], Loss: 0.0006 Epoch [40/64], Step [400/600], Loss: 0.0021 Epoch [40/64], Step [500/600], Loss: 0.0027 Epoch [40/64], Step [600/600], Loss: 0.0027 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0004 Epoch [41/64], Step [300/600], Loss: 0.0016 Epoch [41/64], Step [400/600], Loss: 0.0006 Epoch [41/64], Step [500/600], Loss: 0.0007 Epoch [41/64], Step [600/600], Loss: 0.0003 Epoch [42/64], Step [100/600], Loss: 0.0001 Epoch [42/64], Step [200/600], Loss: 0.0002 Epoch [42/64], Step [300/600], Loss: 0.0001 Epoch [42/64], Step [400/600], Loss: 0.0002 Epoch [42/64], Step [500/600], Loss: 0.0000 Epoch [42/64], Step [600/600], Loss: 0.0001 Epoch [43/64], Step [100/600], Loss: 0.0001 Epoch [43/64], Step [200/600], Loss: 0.0000 Epoch [43/64], Step [300/600], Loss: 0.0001 Epoch [43/64], Step [400/600], Loss: 0.0003 Epoch [43/64], Step [500/600], Loss: 0.0001 Epoch [43/64], Step [600/600], Loss: 0.0002 Epoch [44/64], Step [100/600], Loss: 0.0000 Epoch [44/64], Step [200/600], Loss: 0.0001 Epoch [44/64], Step [300/600], Loss: 0.0000 Epoch [44/64], Step [400/600], Loss: 0.0000 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0001 Epoch [45/64], Step [100/600], Loss: 0.0002 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0000 Epoch [45/64], Step [400/600], Loss: 0.0003 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0000 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0000 Epoch [46/64], Step [300/600], Loss: 0.0001 Epoch [46/64], Step [400/600], Loss: 0.0001 Epoch [46/64], Step [500/600], Loss: 0.0002 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0000 Epoch [47/64], Step [200/600], Loss: 0.0001 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0001 Epoch [47/64], Step [500/600], Loss: 0.0000 Epoch [47/64], Step [600/600], Loss: 0.0000 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0000 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0000 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0021 Epoch [49/64], Step [100/600], Loss: 0.0732 Epoch [49/64], Step [200/600], Loss: 0.0007 Epoch [49/64], Step [300/600], Loss: 0.0000 Epoch [49/64], Step [400/600], Loss: 0.0002 Epoch [49/64], Step [500/600], Loss: 0.0000 Epoch [49/64], Step [600/600], Loss: 0.0001 Epoch [50/64], Step [100/600], Loss: 0.0000 Epoch [50/64], Step [200/600], Loss: 0.0007 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0001 Epoch [50/64], Step [600/600], Loss: 0.0002 Epoch [51/64], Step [100/600], Loss: 0.0005 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0007 Epoch [51/64], Step [400/600], Loss: 0.0001 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0001 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0001 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0002 Epoch [52/64], Step [500/600], Loss: 0.0009 Epoch [52/64], Step [600/600], Loss: 0.0002 Epoch [53/64], Step [100/600], Loss: 0.0003 Epoch [53/64], Step [200/600], Loss: 0.0001 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0001 Epoch [53/64], Step [500/600], Loss: 0.0002 Epoch [53/64], Step [600/600], Loss: 0.0002 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0001 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0000 Epoch [55/64], Step [200/600], Loss: 0.0003 Epoch [55/64], Step [300/600], Loss: 0.0001 Epoch [55/64], Step [400/600], Loss: 0.0001 Epoch [55/64], Step [500/600], Loss: 0.0000 Epoch [55/64], Step [600/600], Loss: 0.0000 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0001 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0000 Epoch [56/64], Step [600/600], Loss: 0.0001 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0000 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0000 Epoch [57/64], Step [500/600], Loss: 0.0001 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0001 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0000 Epoch [59/64], Step [100/600], Loss: 0.0000 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0000 Epoch [60/64], Step [300/600], Loss: 0.0000 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0045 Epoch [60/64], Step [600/600], Loss: 0.0016 Epoch [61/64], Step [100/600], Loss: 0.0000 Epoch [61/64], Step [200/600], Loss: 0.0015 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0001 Epoch [61/64], Step [500/600], Loss: 0.0002 Epoch [61/64], Step [600/600], Loss: 0.0001 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0000 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0003 Epoch [62/64], Step [500/600], Loss: 0.0006 Epoch [62/64], Step [600/600], Loss: 0.0001 Epoch [63/64], Step [100/600], Loss: 0.0000 Epoch [63/64], Step [200/600], Loss: 0.0003 Epoch [63/64], Step [300/600], Loss: 0.0011 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0028 Epoch [63/64], Step [600/600], Loss: 0.0001 Epoch [64/64], Step [100/600], Loss: 0.0002 Epoch [64/64], Step [200/600], Loss: 0.0001 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0001 Epoch [64/64], Step [600/600], Loss: 0.0001 Pytorch test completed in 375.333 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins5833732990333660354.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS