Started by timer Running as SYSTEM Building in workspace /var/lib/jenkins/jobs/pytorch_train/workspace [SSH] script: TARGETNODE="""" module load anaconda3_gpu/4.13.0 module load cuda/11.7.0 cd pytorch_train rm -f train_results_jenkins.csv # Slurm Arguments sargs="--nodes=1 " sargs+="--ntasks-per-node=1 " sargs+="--mem=16g " sargs+="--time=00:10:00 " sargs+="--account=bbmb-hydro " sargs+="--gpus-per-node=1 " sargs+="--gpu-bind=closest " # Add Target node if it exists if [[ ! -z ${TARGETNODE} ]] then PARTITION=`sinfo --format="%R,%N" -n hydro61 | grep hydro61 | cut -d',' -f1 | tail -1` sargs+="--partition=${PARTITION} " sargs+="--nodelist=${TARGETNODE} " else sargs+="--partition=a100 " fi # Executable to run scmd="python train.py | tee time.txt" # Run the command start_time=`date +%s.%N` echo $"Starting srun with command" echo "srun $sargs $scmd" srun $sargs $scmd end_time=`date +%s.%N` runtime=$( echo "$end_time - $start_time" | bc -l ) echo "YVALUE=$runtime" > time.txt printf "Pytorch test completed in %0.3f secs\n" $runtime [SSH] executing... Starting srun with command srun --nodes=1 --ntasks-per-node=1 --mem=16g --time=00:10:00 --account=bbmb-hydro --gpus-per-node=1 --gpu-bind=closest --partition=a100 python train.py | tee time.txt srun: job 97873 queued and waiting for resources srun: job 97873 has been allocated resources Running benchmark on hydro04 Epoch [1/64], Step [100/600], Loss: 0.2538 Epoch [1/64], Step [200/600], Loss: 0.1421 Epoch [1/64], Step [300/600], Loss: 0.0820 Epoch [1/64], Step [400/600], Loss: 0.0541 Epoch [1/64], Step [500/600], Loss: 0.0245 Epoch [1/64], Step [600/600], Loss: 0.0622 Epoch [2/64], Step [100/600], Loss: 0.0570 Epoch [2/64], Step [200/600], Loss: 0.0512 Epoch [2/64], Step [300/600], Loss: 0.0139 Epoch [2/64], Step [400/600], Loss: 0.0274 Epoch [2/64], Step [500/600], Loss: 0.0731 Epoch [2/64], Step [600/600], Loss: 0.0622 Epoch [3/64], Step [100/600], Loss: 0.0430 Epoch [3/64], Step [200/600], Loss: 0.0354 Epoch [3/64], Step [300/600], Loss: 0.0561 Epoch [3/64], Step [400/600], Loss: 0.0380 Epoch [3/64], Step [500/600], Loss: 0.0224 Epoch [3/64], Step [600/600], Loss: 0.0776 Epoch [4/64], Step [100/600], Loss: 0.0080 Epoch [4/64], Step [200/600], Loss: 0.0066 Epoch [4/64], Step [300/600], Loss: 0.0072 Epoch [4/64], Step [400/600], Loss: 0.0160 Epoch [4/64], Step [500/600], Loss: 0.0156 Epoch [4/64], Step [600/600], Loss: 0.0435 Epoch [5/64], Step [100/600], Loss: 0.0156 Epoch [5/64], Step [200/600], Loss: 0.0490 Epoch [5/64], Step [300/600], Loss: 0.0476 Epoch [5/64], Step [400/600], Loss: 0.0188 Epoch [5/64], Step [500/600], Loss: 0.0055 Epoch [5/64], Step [600/600], Loss: 0.0558 Epoch [6/64], Step [100/600], Loss: 0.0373 Epoch [6/64], Step [200/600], Loss: 0.0229 Epoch [6/64], Step [300/600], Loss: 0.0144 Epoch [6/64], Step [400/600], Loss: 0.0174 Epoch [6/64], Step [500/600], Loss: 0.0127 Epoch [6/64], Step [600/600], Loss: 0.0146 Epoch [7/64], Step [100/600], Loss: 0.0078 Epoch [7/64], Step [200/600], Loss: 0.0406 Epoch [7/64], Step [300/600], Loss: 0.0033 Epoch [7/64], Step [400/600], Loss: 0.0713 Epoch [7/64], Step [500/600], Loss: 0.0064 Epoch [7/64], Step [600/600], Loss: 0.0089 Epoch [8/64], Step [100/600], Loss: 0.0021 Epoch [8/64], Step [200/600], Loss: 0.0044 Epoch [8/64], Step [300/600], Loss: 0.0099 Epoch [8/64], Step [400/600], Loss: 0.0025 Epoch [8/64], Step [500/600], Loss: 0.0142 Epoch [8/64], Step [600/600], Loss: 0.0333 Epoch [9/64], Step [100/600], Loss: 0.0163 Epoch [9/64], Step [200/600], Loss: 0.0026 Epoch [9/64], Step [300/600], Loss: 0.0084 Epoch [9/64], Step [400/600], Loss: 0.0026 Epoch [9/64], Step [500/600], Loss: 0.0141 Epoch [9/64], Step [600/600], Loss: 0.0284 Epoch [10/64], Step [100/600], Loss: 0.0106 Epoch [10/64], Step [200/600], Loss: 0.0250 Epoch [10/64], Step [300/600], Loss: 0.0073 Epoch [10/64], Step [400/600], Loss: 0.0080 Epoch [10/64], Step [500/600], Loss: 0.0028 Epoch [10/64], Step [600/600], Loss: 0.0063 Epoch [11/64], Step [100/600], Loss: 0.0070 Epoch [11/64], Step [200/600], Loss: 0.0077 Epoch [11/64], Step [300/600], Loss: 0.0063 Epoch [11/64], Step [400/600], Loss: 0.0023 Epoch [11/64], Step [500/600], Loss: 0.0049 Epoch [11/64], Step [600/600], Loss: 0.0007 Epoch [12/64], Step [100/600], Loss: 0.0124 Epoch [12/64], Step [200/600], Loss: 0.0274 Epoch [12/64], Step [300/600], Loss: 0.0081 Epoch [12/64], Step [400/600], Loss: 0.0065 Epoch [12/64], Step [500/600], Loss: 0.0077 Epoch [12/64], Step [600/600], Loss: 0.0066 Epoch [13/64], Step [100/600], Loss: 0.0005 Epoch [13/64], Step [200/600], Loss: 0.0009 Epoch [13/64], Step [300/600], Loss: 0.0061 Epoch [13/64], Step [400/600], Loss: 0.0017 Epoch [13/64], Step [500/600], Loss: 0.0112 Epoch [13/64], Step [600/600], Loss: 0.0004 Epoch [14/64], Step [100/600], Loss: 0.0042 Epoch [14/64], Step [200/600], Loss: 0.0145 Epoch [14/64], Step [300/600], Loss: 0.0155 Epoch [14/64], Step [400/600], Loss: 0.0024 Epoch [14/64], Step [500/600], Loss: 0.0056 Epoch [14/64], Step [600/600], Loss: 0.0054 Epoch [15/64], Step [100/600], Loss: 0.0014 Epoch [15/64], Step [200/600], Loss: 0.0003 Epoch [15/64], Step [300/600], Loss: 0.0010 Epoch [15/64], Step [400/600], Loss: 0.0007 Epoch [15/64], Step [500/600], Loss: 0.0322 Epoch [15/64], Step [600/600], Loss: 0.0011 Epoch [16/64], Step [100/600], Loss: 0.0026 Epoch [16/64], Step [200/600], Loss: 0.0145 Epoch [16/64], Step [300/600], Loss: 0.0254 Epoch [16/64], Step [400/600], Loss: 0.0076 Epoch [16/64], Step [500/600], Loss: 0.0042 Epoch [16/64], Step [600/600], Loss: 0.0044 Epoch [17/64], Step [100/600], Loss: 0.0008 Epoch [17/64], Step [200/600], Loss: 0.0027 Epoch [17/64], Step [300/600], Loss: 0.0099 Epoch [17/64], Step [400/600], Loss: 0.0036 Epoch [17/64], Step [500/600], Loss: 0.0020 Epoch [17/64], Step [600/600], Loss: 0.0007 Epoch [18/64], Step [100/600], Loss: 0.0006 Epoch [18/64], Step [200/600], Loss: 0.0012 Epoch [18/64], Step [300/600], Loss: 0.0015 Epoch [18/64], Step [400/600], Loss: 0.0169 Epoch [18/64], Step [500/600], Loss: 0.0041 Epoch [18/64], Step [600/600], Loss: 0.0048 Epoch [19/64], Step [100/600], Loss: 0.0021 Epoch [19/64], Step [200/600], Loss: 0.0014 Epoch [19/64], Step [300/600], Loss: 0.0026 Epoch [19/64], Step [400/600], Loss: 0.0023 Epoch [19/64], Step [500/600], Loss: 0.0037 Epoch [19/64], Step [600/600], Loss: 0.0114 Epoch [20/64], Step [100/600], Loss: 0.0010 Epoch [20/64], Step [200/600], Loss: 0.0005 Epoch [20/64], Step [300/600], Loss: 0.0008 Epoch [20/64], Step [400/600], Loss: 0.0070 Epoch [20/64], Step [500/600], Loss: 0.0023 Epoch [20/64], Step [600/600], Loss: 0.0046 Epoch [21/64], Step [100/600], Loss: 0.0010 Epoch [21/64], Step [200/600], Loss: 0.0034 Epoch [21/64], Step [300/600], Loss: 0.0003 Epoch [21/64], Step [400/600], Loss: 0.0024 Epoch [21/64], Step [500/600], Loss: 0.0024 Epoch [21/64], Step [600/600], Loss: 0.0008 Epoch [22/64], Step [100/600], Loss: 0.0004 Epoch [22/64], Step [200/600], Loss: 0.0005 Epoch [22/64], Step [300/600], Loss: 0.0018 Epoch [22/64], Step [400/600], Loss: 0.0004 Epoch [22/64], Step [500/600], Loss: 0.0001 Epoch [22/64], Step [600/600], Loss: 0.0002 Epoch [23/64], Step [100/600], Loss: 0.0001 Epoch [23/64], Step [200/600], Loss: 0.0004 Epoch [23/64], Step [300/600], Loss: 0.0005 Epoch [23/64], Step [400/600], Loss: 0.0006 Epoch [23/64], Step [500/600], Loss: 0.0005 Epoch [23/64], Step [600/600], Loss: 0.0070 Epoch [24/64], Step [100/600], Loss: 0.0010 Epoch [24/64], Step [200/600], Loss: 0.0041 Epoch [24/64], Step [300/600], Loss: 0.0005 Epoch [24/64], Step [400/600], Loss: 0.0120 Epoch [24/64], Step [500/600], Loss: 0.0009 Epoch [24/64], Step [600/600], Loss: 0.0118 Epoch [25/64], Step [100/600], Loss: 0.0000 Epoch [25/64], Step [200/600], Loss: 0.0243 Epoch [25/64], Step [300/600], Loss: 0.0047 Epoch [25/64], Step [400/600], Loss: 0.0001 Epoch [25/64], Step [500/600], Loss: 0.0003 Epoch [25/64], Step [600/600], Loss: 0.0069 Epoch [26/64], Step [100/600], Loss: 0.0003 Epoch [26/64], Step [200/600], Loss: 0.0012 Epoch [26/64], Step [300/600], Loss: 0.0003 Epoch [26/64], Step [400/600], Loss: 0.0001 Epoch [26/64], Step [500/600], Loss: 0.0008 Epoch [26/64], Step [600/600], Loss: 0.0000 Epoch [27/64], Step [100/600], Loss: 0.0017 Epoch [27/64], Step [200/600], Loss: 0.0003 Epoch [27/64], Step [300/600], Loss: 0.0002 Epoch [27/64], Step [400/600], Loss: 0.0004 Epoch [27/64], Step [500/600], Loss: 0.0029 Epoch [27/64], Step [600/600], Loss: 0.0001 Epoch [28/64], Step [100/600], Loss: 0.0005 Epoch [28/64], Step [200/600], Loss: 0.0001 Epoch [28/64], Step [300/600], Loss: 0.0001 Epoch [28/64], Step [400/600], Loss: 0.0002 Epoch [28/64], Step [500/600], Loss: 0.0001 Epoch [28/64], Step [600/600], Loss: 0.0000 Epoch [29/64], Step [100/600], Loss: 0.0001 Epoch [29/64], Step [200/600], Loss: 0.0001 Epoch [29/64], Step [300/600], Loss: 0.0000 Epoch [29/64], Step [400/600], Loss: 0.0000 Epoch [29/64], Step [500/600], Loss: 0.0002 Epoch [29/64], Step [600/600], Loss: 0.0002 Epoch [30/64], Step [100/600], Loss: 0.0002 Epoch [30/64], Step [200/600], Loss: 0.0001 Epoch [30/64], Step [300/600], Loss: 0.0001 Epoch [30/64], Step [400/600], Loss: 0.0000 Epoch [30/64], Step [500/600], Loss: 0.0000 Epoch [30/64], Step [600/600], Loss: 0.0001 Epoch [31/64], Step [100/600], Loss: 0.0000 Epoch [31/64], Step [200/600], Loss: 0.0001 Epoch [31/64], Step [300/600], Loss: 0.0000 Epoch [31/64], Step [400/600], Loss: 0.0003 Epoch [31/64], Step [500/600], Loss: 0.0002 Epoch [31/64], Step [600/600], Loss: 0.0002 Epoch [32/64], Step [100/600], Loss: 0.0001 Epoch [32/64], Step [200/600], Loss: 0.0004 Epoch [32/64], Step [300/600], Loss: 0.0000 Epoch [32/64], Step [400/600], Loss: 0.0001 Epoch [32/64], Step [500/600], Loss: 0.0001 Epoch [32/64], Step [600/600], Loss: 0.0000 Epoch [33/64], Step [100/600], Loss: 0.0000 Epoch [33/64], Step [200/600], Loss: 0.0000 Epoch [33/64], Step [300/600], Loss: 0.0571 Epoch [33/64], Step [400/600], Loss: 0.0005 Epoch [33/64], Step [500/600], Loss: 0.0105 Epoch [33/64], Step [600/600], Loss: 0.0389 Epoch [34/64], Step [100/600], Loss: 0.0029 Epoch [34/64], Step [200/600], Loss: 0.0003 Epoch [34/64], Step [300/600], Loss: 0.0100 Epoch [34/64], Step [400/600], Loss: 0.0012 Epoch [34/64], Step [500/600], Loss: 0.0001 Epoch [34/64], Step [600/600], Loss: 0.0001 Epoch [35/64], Step [100/600], Loss: 0.0010 Epoch [35/64], Step [200/600], Loss: 0.0004 Epoch [35/64], Step [300/600], Loss: 0.0002 Epoch [35/64], Step [400/600], Loss: 0.0001 Epoch [35/64], Step [500/600], Loss: 0.0001 Epoch [35/64], Step [600/600], Loss: 0.0000 Epoch [36/64], Step [100/600], Loss: 0.0002 Epoch [36/64], Step [200/600], Loss: 0.0001 Epoch [36/64], Step [300/600], Loss: 0.0001 Epoch [36/64], Step [400/600], Loss: 0.0003 Epoch [36/64], Step [500/600], Loss: 0.0001 Epoch [36/64], Step [600/600], Loss: 0.0000 Epoch [37/64], Step [100/600], Loss: 0.0001 Epoch [37/64], Step [200/600], Loss: 0.0005 Epoch [37/64], Step [300/600], Loss: 0.0003 Epoch [37/64], Step [400/600], Loss: 0.0003 Epoch [37/64], Step [500/600], Loss: 0.0003 Epoch [37/64], Step [600/600], Loss: 0.0006 Epoch [38/64], Step [100/600], Loss: 0.0000 Epoch [38/64], Step [200/600], Loss: 0.0001 Epoch [38/64], Step [300/600], Loss: 0.0003 Epoch [38/64], Step [400/600], Loss: 0.0000 Epoch [38/64], Step [500/600], Loss: 0.0001 Epoch [38/64], Step [600/600], Loss: 0.0002 Epoch [39/64], Step [100/600], Loss: 0.0004 Epoch [39/64], Step [200/600], Loss: 0.0000 Epoch [39/64], Step [300/600], Loss: 0.0001 Epoch [39/64], Step [400/600], Loss: 0.0001 Epoch [39/64], Step [500/600], Loss: 0.0000 Epoch [39/64], Step [600/600], Loss: 0.0001 Epoch [40/64], Step [100/600], Loss: 0.0000 Epoch [40/64], Step [200/600], Loss: 0.0001 Epoch [40/64], Step [300/600], Loss: 0.0001 Epoch [40/64], Step [400/600], Loss: 0.0001 Epoch [40/64], Step [500/600], Loss: 0.0001 Epoch [40/64], Step [600/600], Loss: 0.0001 Epoch [41/64], Step [100/600], Loss: 0.0000 Epoch [41/64], Step [200/600], Loss: 0.0001 Epoch [41/64], Step [300/600], Loss: 0.0000 Epoch [41/64], Step [400/600], Loss: 0.0000 Epoch [41/64], Step [500/600], Loss: 0.0000 Epoch [41/64], Step [600/600], Loss: 0.0004 Epoch [42/64], Step [100/600], Loss: 0.0003 Epoch [42/64], Step [200/600], Loss: 0.0000 Epoch [42/64], Step [300/600], Loss: 0.0004 Epoch [42/64], Step [400/600], Loss: 0.0004 Epoch [42/64], Step [500/600], Loss: 0.0001 Epoch [42/64], Step [600/600], Loss: 0.0866 Epoch [43/64], Step [100/600], Loss: 0.0009 Epoch [43/64], Step [200/600], Loss: 0.0015 Epoch [43/64], Step [300/600], Loss: 0.0008 Epoch [43/64], Step [400/600], Loss: 0.0608 Epoch [43/64], Step [500/600], Loss: 0.0004 Epoch [43/64], Step [600/600], Loss: 0.0002 Epoch [44/64], Step [100/600], Loss: 0.0015 Epoch [44/64], Step [200/600], Loss: 0.0000 Epoch [44/64], Step [300/600], Loss: 0.0009 Epoch [44/64], Step [400/600], Loss: 0.0003 Epoch [44/64], Step [500/600], Loss: 0.0000 Epoch [44/64], Step [600/600], Loss: 0.0002 Epoch [45/64], Step [100/600], Loss: 0.0000 Epoch [45/64], Step [200/600], Loss: 0.0000 Epoch [45/64], Step [300/600], Loss: 0.0006 Epoch [45/64], Step [400/600], Loss: 0.0009 Epoch [45/64], Step [500/600], Loss: 0.0002 Epoch [45/64], Step [600/600], Loss: 0.0008 Epoch [46/64], Step [100/600], Loss: 0.0001 Epoch [46/64], Step [200/600], Loss: 0.0004 Epoch [46/64], Step [300/600], Loss: 0.0000 Epoch [46/64], Step [400/600], Loss: 0.0003 Epoch [46/64], Step [500/600], Loss: 0.0001 Epoch [46/64], Step [600/600], Loss: 0.0001 Epoch [47/64], Step [100/600], Loss: 0.0002 Epoch [47/64], Step [200/600], Loss: 0.0004 Epoch [47/64], Step [300/600], Loss: 0.0001 Epoch [47/64], Step [400/600], Loss: 0.0000 Epoch [47/64], Step [500/600], Loss: 0.0001 Epoch [47/64], Step [600/600], Loss: 0.0001 Epoch [48/64], Step [100/600], Loss: 0.0001 Epoch [48/64], Step [200/600], Loss: 0.0001 Epoch [48/64], Step [300/600], Loss: 0.0000 Epoch [48/64], Step [400/600], Loss: 0.0001 Epoch [48/64], Step [500/600], Loss: 0.0000 Epoch [48/64], Step [600/600], Loss: 0.0000 Epoch [49/64], Step [100/600], Loss: 0.0000 Epoch [49/64], Step [200/600], Loss: 0.0000 Epoch [49/64], Step [300/600], Loss: 0.0001 Epoch [49/64], Step [400/600], Loss: 0.0000 Epoch [49/64], Step [500/600], Loss: 0.0001 Epoch [49/64], Step [600/600], Loss: 0.0000 Epoch [50/64], Step [100/600], Loss: 0.0001 Epoch [50/64], Step [200/600], Loss: 0.0000 Epoch [50/64], Step [300/600], Loss: 0.0001 Epoch [50/64], Step [400/600], Loss: 0.0000 Epoch [50/64], Step [500/600], Loss: 0.0000 Epoch [50/64], Step [600/600], Loss: 0.0000 Epoch [51/64], Step [100/600], Loss: 0.0001 Epoch [51/64], Step [200/600], Loss: 0.0000 Epoch [51/64], Step [300/600], Loss: 0.0000 Epoch [51/64], Step [400/600], Loss: 0.0000 Epoch [51/64], Step [500/600], Loss: 0.0001 Epoch [51/64], Step [600/600], Loss: 0.0000 Epoch [52/64], Step [100/600], Loss: 0.0001 Epoch [52/64], Step [200/600], Loss: 0.0000 Epoch [52/64], Step [300/600], Loss: 0.0000 Epoch [52/64], Step [400/600], Loss: 0.0000 Epoch [52/64], Step [500/600], Loss: 0.0000 Epoch [52/64], Step [600/600], Loss: 0.0000 Epoch [53/64], Step [100/600], Loss: 0.0000 Epoch [53/64], Step [200/600], Loss: 0.0000 Epoch [53/64], Step [300/600], Loss: 0.0000 Epoch [53/64], Step [400/600], Loss: 0.0000 Epoch [53/64], Step [500/600], Loss: 0.0000 Epoch [53/64], Step [600/600], Loss: 0.0000 Epoch [54/64], Step [100/600], Loss: 0.0000 Epoch [54/64], Step [200/600], Loss: 0.0000 Epoch [54/64], Step [300/600], Loss: 0.0000 Epoch [54/64], Step [400/600], Loss: 0.0000 Epoch [54/64], Step [500/600], Loss: 0.0000 Epoch [54/64], Step [600/600], Loss: 0.0000 Epoch [55/64], Step [100/600], Loss: 0.0218 Epoch [55/64], Step [200/600], Loss: 0.0228 Epoch [55/64], Step [300/600], Loss: 0.0003 Epoch [55/64], Step [400/600], Loss: 0.0000 Epoch [55/64], Step [500/600], Loss: 0.0055 Epoch [55/64], Step [600/600], Loss: 0.0006 Epoch [56/64], Step [100/600], Loss: 0.0000 Epoch [56/64], Step [200/600], Loss: 0.0103 Epoch [56/64], Step [300/600], Loss: 0.0000 Epoch [56/64], Step [400/600], Loss: 0.0001 Epoch [56/64], Step [500/600], Loss: 0.0004 Epoch [56/64], Step [600/600], Loss: 0.0054 Epoch [57/64], Step [100/600], Loss: 0.0001 Epoch [57/64], Step [200/600], Loss: 0.0002 Epoch [57/64], Step [300/600], Loss: 0.0000 Epoch [57/64], Step [400/600], Loss: 0.0004 Epoch [57/64], Step [500/600], Loss: 0.0000 Epoch [57/64], Step [600/600], Loss: 0.0000 Epoch [58/64], Step [100/600], Loss: 0.0001 Epoch [58/64], Step [200/600], Loss: 0.0000 Epoch [58/64], Step [300/600], Loss: 0.0000 Epoch [58/64], Step [400/600], Loss: 0.0000 Epoch [58/64], Step [500/600], Loss: 0.0000 Epoch [58/64], Step [600/600], Loss: 0.0001 Epoch [59/64], Step [100/600], Loss: 0.0001 Epoch [59/64], Step [200/600], Loss: 0.0000 Epoch [59/64], Step [300/600], Loss: 0.0000 Epoch [59/64], Step [400/600], Loss: 0.0000 Epoch [59/64], Step [500/600], Loss: 0.0000 Epoch [59/64], Step [600/600], Loss: 0.0001 Epoch [60/64], Step [100/600], Loss: 0.0000 Epoch [60/64], Step [200/600], Loss: 0.0001 Epoch [60/64], Step [300/600], Loss: 0.0001 Epoch [60/64], Step [400/600], Loss: 0.0000 Epoch [60/64], Step [500/600], Loss: 0.0001 Epoch [60/64], Step [600/600], Loss: 0.0000 Epoch [61/64], Step [100/600], Loss: 0.0003 Epoch [61/64], Step [200/600], Loss: 0.0000 Epoch [61/64], Step [300/600], Loss: 0.0000 Epoch [61/64], Step [400/600], Loss: 0.0000 Epoch [61/64], Step [500/600], Loss: 0.0000 Epoch [61/64], Step [600/600], Loss: 0.0000 Epoch [62/64], Step [100/600], Loss: 0.0001 Epoch [62/64], Step [200/600], Loss: 0.0001 Epoch [62/64], Step [300/600], Loss: 0.0000 Epoch [62/64], Step [400/600], Loss: 0.0000 Epoch [62/64], Step [500/600], Loss: 0.0000 Epoch [62/64], Step [600/600], Loss: 0.0000 Epoch [63/64], Step [100/600], Loss: 0.0001 Epoch [63/64], Step [200/600], Loss: 0.0000 Epoch [63/64], Step [300/600], Loss: 0.0001 Epoch [63/64], Step [400/600], Loss: 0.0000 Epoch [63/64], Step [500/600], Loss: 0.0000 Epoch [63/64], Step [600/600], Loss: 0.0000 Epoch [64/64], Step [100/600], Loss: 0.0000 Epoch [64/64], Step [200/600], Loss: 0.0000 Epoch [64/64], Step [300/600], Loss: 0.0000 Epoch [64/64], Step [400/600], Loss: 0.0000 Epoch [64/64], Step [500/600], Loss: 0.0000 Epoch [64/64], Step [600/600], Loss: 0.0000 Pytorch test completed in 386.795 secs [SSH] completed [SSH] exit-status: 0 [workspace] $ /bin/sh -xe /tmp/jenkins4541007694411512308.sh + scp 'HYDRO_REMOTE:~svchydrojenkins/pytorch_train/time.txt' /var/lib/jenkins/jobs/pytorch_train/workspace Recording plot data Saving plot series data from: /var/lib/jenkins/jobs/pytorch_train/workspace/time.txt Finished: SUCCESS